Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 111(17): 6287-92, 2014 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-24733907

RESUMO

The recently discovered lytic polysaccharide monooxygenases (LPMOs) are known to carry out oxidative cleavage of glycoside bonds in chitin and cellulose, thus boosting the activity of well-known hydrolytic depolymerizing enzymes. Because biomass-degrading microorganisms tend to produce a plethora of LPMOs, and considering the complexity and copolymeric nature of the plant cell wall, it has been speculated that some LPMOs may act on other substrates, in particular the hemicelluloses that tether to cellulose microfibrils. We demonstrate that an LPMO from Neurospora crassa, NcLPMO9C, indeed degrades various hemicelluloses, in particular xyloglucan. This activity was discovered using a glycan microarray-based screening method for detection of substrate specificities of carbohydrate-active enzymes, and further explored using defined oligomeric hemicelluloses, isolated polymeric hemicelluloses and cell walls. Products generated by NcLPMO9C were analyzed using high performance anion exchange chromatography and multidimensional mass spectrometry. We show that NcLPMO9C generates oxidized products from a variety of substrates and that its product profile differs from those of hydrolytic enzymes acting on the same substrates. The enzyme particularly acts on the glucose backbone of xyloglucan, accepting various substitutions (xylose, galactose) in almost all positions. Because the attachment of xyloglucan to cellulose hampers depolymerization of the latter, it is possible that the beneficial effect of the LPMOs that are present in current commercial cellulase mixtures in part is due to hitherto undetected LPMO activities on recalcitrant hemicellulose structures.


Assuntos
Parede Celular/metabolismo , Oxigenases de Função Mista/metabolismo , Neurospora crassa/enzimologia , Células Vegetais/metabolismo , Polissacarídeos/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Glucanos/química , Glucanos/metabolismo , Solanum lycopersicum/citologia , Solanum lycopersicum/metabolismo , Mananas/metabolismo , Análise em Microsséries , Oxirredução , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Especificidade por Substrato , Xilanos/química , Xilanos/metabolismo , beta-Glucanas/metabolismo
2.
J Biol Chem ; 290(38): 22955-69, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26178376

RESUMO

The recently discovered lytic polysaccharide monooxygenases (LPMOs) carry out oxidative cleavage of polysaccharides and are of major importance for efficient processing of biomass. NcLPMO9C from Neurospora crassa acts both on cellulose and on non-cellulose ß-glucans, including cellodextrins and xyloglucan. The crystal structure of the catalytic domain of NcLPMO9C revealed an extended, highly polar substrate-binding surface well suited to interact with a variety of sugar substrates. The ability of NcLPMO9C to act on soluble substrates was exploited to study enzyme-substrate interactions. EPR studies demonstrated that the Cu(2+) center environment is altered upon substrate binding, whereas isothermal titration calorimetry studies revealed binding affinities in the low micromolar range for polymeric substrates that are due in part to the presence of a carbohydrate-binding module (CBM1). Importantly, the novel structure of NcLPMO9C enabled a comparative study, revealing that the oxidative regioselectivity of LPMO9s (C1, C4, or both) correlates with distinct structural features of the copper coordination sphere. In strictly C1-oxidizing LPMO9s, access to the solvent-facing axial coordination position is restricted by a conserved tyrosine residue, whereas access to this same position seems unrestricted in C4-oxidizing LPMO9s. LPMO9s known to produce a mixture of C1- and C4-oxidized products show an intermediate situation.


Assuntos
Cálcio/química , Proteínas Fúngicas/química , Oxigenases de Função Mista/química , Neurospora crassa/enzimologia , Polissacarídeos/química , Especificidade por Substrato
3.
J Biol Chem ; 289(5): 2632-42, 2014 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-24324265

RESUMO

Lignocellulosic biomass is a renewable resource that significantly can substitute fossil resources for the production of fuels, chemicals, and materials. Efficient saccharification of this biomass to fermentable sugars will be a key technology in future biorefineries. Traditionally, saccharification was thought to be accomplished by mixtures of hydrolytic enzymes. However, recently it has been shown that lytic polysaccharide monooxygenases (LPMOs) contribute to this process by catalyzing oxidative cleavage of insoluble polysaccharides utilizing a mechanism involving molecular oxygen and an electron donor. These enzymes thus represent novel tools for the saccharification of plant biomass. Most characterized LPMOs, including all reported bacterial LPMOs, form aldonic acids, i.e., products oxidized in the C1 position of the terminal sugar. Oxidation at other positions has been observed, and there has been some debate concerning the nature of this position (C4 or C6). In this study, we have characterized an LPMO from Neurospora crassa (NcLPMO9C; also known as NCU02916 and NcGH61-3). Remarkably, and in contrast to all previously characterized LPMOs, which are active only on polysaccharides, NcLPMO9C is able to cleave soluble cello-oligosaccharides as short as a tetramer, a property that allowed detailed product analysis. Using mass spectrometry and NMR, we show that the cello-oligosaccharide products released by this enzyme contain a C4 gemdiol/keto group at the nonreducing end.


Assuntos
Biocombustíveis/microbiologia , Celulose/metabolismo , Oxigenases de Função Mista/metabolismo , Neurospora crassa/enzimologia , Oligossacarídeos/metabolismo , Carbono/metabolismo , Espectrometria de Massas , Neurospora crassa/metabolismo , Oxirredução , Oxigênio/metabolismo , Polissacarídeos/metabolismo
4.
FEBS Lett ; 590(16): 2737-47, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27397613

RESUMO

Starch-binding modules of family 20 (CBM20) are present in 60% of lytic polysaccharide monooxygenases (LPMOs) catalyzing the oxidative breakdown of starch, which highlights functional importance in LPMO activity. The substrate-binding properties of starch-active LMPOs, however, are currently unexplored. Affinities and binding-thermodynamics of two recombinant fungal LPMOs toward starch and ß-cyclodextrin were shown to be similar to fungal CBM20s. Amplex Red assays showed ascorbate and Cu-dependent activity, which was inhibited in the presence of ß-cylodextrin and amylose. Phylogenetically, the clustering of CBM20s from starch-targeting LPMOs and hydrolases was in accord with taxonomy and did not correlate to appended catalytic activity. Altogether, these results demonstrate that the CBM20-binding scaffold is retained in the evolution of hydrolytic and oxidative starch-degrading activities.


Assuntos
Evolução Molecular , Oxigenases de Função Mista/metabolismo , Amido/metabolismo , beta-Ciclodextrinas/metabolismo , Amilose/química , Amilose/genética , Amilose/metabolismo , Domínio Catalítico/genética , Cobre/química , Hidrolases/química , Hidrolases/genética , Hidrolases/metabolismo , Magnaporthe/enzimologia , Oxigenases de Função Mista/química , Oxigenases de Função Mista/genética , Oxirredução , Filogenia , Polissacarídeos , Amido/química , Termodinâmica , beta-Ciclodextrinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA