Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Proc Natl Acad Sci U S A ; 111(9): 3466-71, 2014 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-24550494

RESUMO

Pancreatic cancer is one of the deadliest human malignancies. A striking feature of pancreatic cancer is that activating Kras mutations are found in ∼90% of cases. However, apart from a restricted population of cells expressing pancreatic and duodenal homeobox 1 (PDX1), most pancreatic cells are refractory to Kras-driven transformation. In the present study, we sought to determine which subsets of PDX1+ cells may be responsible for tumor growth. Using the Lox-Stop-Lox-KrasG12D genetic mouse model of pancreatic carcinogenesis, we isolated a population of KrasG12D-expressing PDX1+ cells with an inherent capacity to metastasize. This population of cells bears the surface phenotype of EpCAM+CD24+CD44+CD133-SCA1- and is closer in its properties to stem-like cells than to more mature cell types. We further demonstrate that the tumorigenic capacity of PDX1+ cells is limited, becoming progressively lost as the cells acquire a mature phenotype. These data are consistent with the hypothesis that the adult pancreas harbors a dormant progenitor cell population that is capable of initiating tumor growth under conditions of oncogenic stimulation. We present evidence that constitutive activation of the mitogen-activated protein kinase (MAPK/ERK) signaling and stabilization of the MYC protein are the two main driving forces behind the development of pancreatic cancer cells with stem-cell-like properties and high metastatic potential. Our results suggest that pancreatic cells bearing Kras mutation can be induced to differentiate into quasi-normal cells with suppressed tumorigenicity by selective inhibition of the MAPK/ERK/MYC signaling cascade.


Assuntos
Proteínas de Homeodomínio/metabolismo , Neoplasias Pulmonares/secundário , Sistema de Sinalização das MAP Quinases/fisiologia , Metástase Neoplásica/fisiopatologia , Neoplasias Pancreáticas/fisiopatologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Transativadores/metabolismo , Animais , Western Blotting , Citometria de Fluxo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Knockout , Camundongos Nus , Mutação de Sentido Incorreto/genética , Neoplasias Pancreáticas/metabolismo , Reação em Cadeia da Polimerase , Proteína Supressora de Tumor p53/genética
2.
Proc Natl Acad Sci U S A ; 110(10): 3937-42, 2013 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-23431158

RESUMO

Genetically or epigenetically defined reprogramming is a hallmark of cancer cells. However, a causal association between genome reprogramming and cancer has not yet been conclusively established. In particular, little is known about the mechanisms that underlie metastasis of cancer, and even less is known about the identity of metastasizing cancer cells. In this study, we used a model of conditional expression of oncogenic KrasG12D allele in primary mouse cells to show that reprogramming and dedifferentiation is a fundamental early step in malignant transformation and cancer initiation. Our data indicate that stable expression of activated KrasG12D confers on cells a large degree of phenotypic plasticity that predisposes them to neoplastic transformation and acquisition of stem cell characteristics. We have developed a genetically tractable model system to investigate the origins and evolution of metastatic pancreatic cancer cells. We show that metastatic conversion of KrasG12D-expressing cells that exhibit different degrees of differentiation and malignancy can be reconstructed in cell culture, and that the proto-oncogene c-Myc controls the generation of self-renewing metastatic cancer cells. Collectively, our results support a model wherein non-stem cancer cells have the potential to dedifferentiate and acquire stem cell properties as a direct consequence of oncogene-induced plasticity. Moreover, the disturbance in the normally existing dynamic equilibrium between cancer stem cells and non-stem cancer cells allows the formation of cancer stem cells with high metastatic capacity at any time during cancer progression.


Assuntos
Transdiferenciação Celular/genética , Transformação Celular Neoplásica/genética , Genes myc , Genes ras , Animais , Transformação Celular Neoplásica/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Genes p53 , Camundongos , Camundongos Knockout , Modelos Genéticos , Metástase Neoplásica/genética , Metástase Neoplásica/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Neoplasias Pancreáticas/etiologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Fenótipo , Mutação Puntual
3.
Nat Commun ; 12(1): 1482, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33674596

RESUMO

Immune evasion is a hallmark of KRAS-driven cancers, but the underlying causes remain unresolved. Here, we use a mouse model of pancreatic ductal adenocarcinoma to inactivate KRAS by CRISPR-mediated genome editing. We demonstrate that at an advanced tumor stage, dependence on KRAS for tumor growth is reduced and is manifested in the suppression of antitumor immunity. KRAS-deficient cells retain the ability to form tumors in immunodeficient mice. However, they fail to evade the host immune system in syngeneic wild-type mice, triggering strong antitumor response. We uncover changes both in tumor cells and host immune cells attributable to oncogenic KRAS expression. We identify BRAF and MYC as key mediators of KRAS-driven tumor immune suppression and show that loss of BRAF effectively blocks tumor growth in mice. Applying our results to human PDAC we show that lowering KRAS activity is likewise associated with a more vigorous immune environment.


Assuntos
Evasão da Resposta Imune/fisiologia , Modelos Genéticos , Neoplasias Pancreáticas/imunologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Animais , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Edição de Genes , Perfilação da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Nus , Ductos Pancreáticos/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas p21(ras)/imunologia , Transcriptoma , Neoplasias Pancreáticas
4.
Oncotarget ; 8(11): 17995-18009, 2017 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-28152508

RESUMO

KRAS is the most commonly mutated oncogene, frequently associated with some of the deadliest forms of cancer. However, the need for potent and specific KRAS inhibitors remains unmet. Here, we evaluated the effects of selected cytotoxic agents on oncogenic KRAS signaling and drug response. The data provided new insights into the functional interaction between the KRAS and MYC pathways and revealed key differences between WT and mutant KRAS expressing cells. Systematic investigation of non-small cell lung cancer cell lines revealed that KRAS mutation can paradoxically increase the sensitivity of cells to cytotoxic agents. We identify MYC as a key regulator of the cellular stress responses and tumor cell viability as MYC expression was suppressed in drug-sensitive but not resistant cells. Furthermore, this suppression was driven by hyperactive KRAS/MAPK signaling. Our findings support a direct link between MYC and cancer cell viability, and raise the possibility that inactivation of MYC may be an effective therapeutic strategy for KRAS mutant tumors across various cancer types.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Antineoplásicos/farmacologia , Western Blotting , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Citotoxinas/farmacologia , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neoplasias Pulmonares/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transdução de Sinais/efeitos dos fármacos
5.
Oncogene ; 21(5): 697-707, 2002 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-11850798

RESUMO

V-SEA is the transforming component of S13 Avian Erythroblastosis Retrovirus that causes erythroblastosis and anemia in chicken. Like all members in the family (MET, RON, SEA), its cytosolic domain possesses two tyrosine autophosphorylation sites in the tandemly arranged bidentate motif that serve as docking sites for SH2 domain-containing proteins. Here, we investigated phosphotyrosine-dependent activation of signaling pathways and their significance in V-SEA-induced transformation and/or proliferation. We demonstrated that V-SEA activates the PI3K-Akt signaling pathway primarily in Y557- and secondarily in Y564-dependent manner. V-SEA was also shown to induce the tyrosine phosphorylation of the Gab2 protein, leading to PI3K association and thus providing an alternative route for PI3K activation. On the other hand, activation of the Ras-ERK pathway is primarily via Y564 and secondarily via Y557. A dominant-negative form of Ras inhibited V-SEA-induced ERK phosphorylation in concentration dependent manner suggesting the importance of the Grb2-Ras signaling axis in V-SEA-induced ERK activation. The biological significance of activation of the PI3K-Akt and the Ras-ERK pathways in V-SEA-induced transformation was analysed in the V-SEA-RAT1 and V-SEA-3T3 cell lines by employing specific inhibitors, LY294002 and PD98059 compounds. Both the PD and LY compounds inhibited cell growth, but only the PD compound caused reversion of the transformed phenotype. In addition, both compounds inhibited focal colony formation by the transformants in soft agar. Thus, transformation by the V-SEA oncogene is a function of the concomitant activation of, at least, the PI3K-Akt and Ras-ERK signaling pathways that regulate cell growth and morphology.


Assuntos
Transformação Celular Viral , Sistema de Sinalização das MAP Quinases , Proteínas Oncogênicas Virais/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Divisão Celular , Linhagem Celular , Linhagem Celular Transformada , Tamanho Celular , Cromonas/farmacologia , Ensaio de Unidades Formadoras de Colônias , Ativação Enzimática , Inibidores Enzimáticos/farmacologia , Flavonoides/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Morfolinas/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase , Fosfoproteínas/fisiologia , Proteínas Tirosina Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt , Proteínas Proto-Oncogênicas p21(ras)/metabolismo
6.
Oncogene ; 22(44): 6909-18, 2003 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-14534538

RESUMO

Receptor tyrosine kinases (RTKs) such as the fibroblast growth factor receptor (FGFR) and the epidermal growth factor receptor are overexpressed in a variety of cancers. In addition to overexpression, the FGFRs are found mutated in some cancers. The Src homology 2 domain-containing phosphotyrosine phosphatase (SHP2) is a critical mediator of RTK signaling, but its role in oncogenic RTK-induced cell transformation and cancer development is largely unknown. In the current report, we demonstrate that constitutively activated FGFR3 (K/E-FR3) transforms NIH-3T3 cells, and that SHP2 is a critical mediator of this transformation. Infection of K/E-FR3-transformed 3T3 cells with a retrovirus carrying a dominant-negative mutant of SHP2 (C/S-SHP2) retarded cell growth, reversed the transformation phenotype and inhibited focus-forming ability. Furthermore, treatment of K/E-FR3-transformed NIH-3T3 cells with PD98059 or LY294002, specific inhibitors of MEK and PI3K, respectively, inhibited focus formation. Biochemical analysis showed that K/E-FR3 activates the Ras-ERK and the PI3K signaling pathways, and that the C/S SHP2 mutant suppressed this effect via competitive displacement of interaction of the endogenous SHP2 with FRS2. However, the C/S SHP2 protein did not show any effect on receptor autophosphorylation, FRS2 tyrosine phosphorylation or interaction of Grb2 with K/E-FR3 or FRS2. Together, the results show that K/E-FR3 is transforming and that the Ras-ERK and the PI3K-Akt signaling pathways, which are positively regulated by SHP2, are important for K/E-FR3-induced transformation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Transporte/metabolismo , Transformação Celular Viral , Proteínas de Membrana/metabolismo , Proteínas Serina-Treonina Quinases , Proteínas Tirosina Quinases , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Células 3T3 , Animais , Células COS , Proteínas Quinases Dependentes de Cálcio-Calmodulina/antagonistas & inibidores , Proteínas de Transporte/genética , Linhagem Celular Transformada , Transformação Celular Neoplásica , Células Cultivadas , Chlorocebus aethiops , Cromonas/farmacologia , Ativação Enzimática , Inibidores Enzimáticos/farmacologia , Fatores de Crescimento de Fibroblastos/metabolismo , Flavonoides/farmacologia , Regulação da Expressão Gênica , Glicoproteínas de Membrana , Proteínas de Membrana/genética , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Morfolinas/farmacologia , Mutagênese Sítio-Dirigida , Fosfatidilinositol 3-Quinases/genética , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos , Receptores de Fatores de Crescimento de Fibroblastos/genética , Retroviridae/genética , Transdução de Sinais/efeitos dos fármacos , Proteínas ras/metabolismo
7.
Oncogene ; 22(41): 6311-8, 2003 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-14508511

RESUMO

Transformation of fibroblasts by V-SEA involves activation of the ERK and phosphatidylinositol 3-kinase (PI3K) pathways. Effector proteins that are key mediators of the ERK and PI3K pathways, namely Grb2, the tyrosine phosphatase, SHP2 and PI3K, interact with the two phosphotyrosines found in the bidentate motif in the carboxy-terminal region of V-SEA. Genetic analysis demonstrated that while Y557 was a primary binding site and thus activator of the PI3K-Akt pathway, Y564 also contributed to the activation of this pathway. Y564 was located within a Grb2-binding motif, this raised the possibility that a protein that associated with Grb2 might be important for this PI3K activation. The scaffolding proteins Gab1 and/or Gab2 were candidates for this role. In this report, we demonstrate that V-SEA preferentially interacts with Gab2. Furthermore by using Gab2 null fibroblasts, we demonstrate that Gab2 is essential for fibroblast transformation by V-SEA. Using mutant forms of Gab2, we show that activation of the PI3K-Akt pathway via Gab2 is required for V-SEA-induced transformation. However, efficient fibroblast transformation also requires the SHP2 interaction site on Gab2.


Assuntos
Transformação Celular Neoplásica/metabolismo , Fibroblastos/metabolismo , Fosfoproteínas/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo
8.
Oncotarget ; 6(18): 15814-27, 2015 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-26158412

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive, metastatic disease with limited treatment options. Factors contributing to the metastatic predisposition and therapy resistance in pancreatic cancer are not well understood. Here, we used a mouse model of KRAS-driven pancreatic carcinogenesis to define distinct subtypes of PDAC metastasis: epithelial, mesenchymal and quasi-mesenchymal. We examined pro-survival signals in these cells and the therapeutic response differences between them. Our data indicate that the initiation and maintenance of the transformed state are separable, and that KRAS dependency is not a fundamental constant of KRAS-initiated tumors. Moreover, some cancer cells can shuttle between the KRAS dependent (drug-sensitive) and independent (drug-tolerant) states and thus escape extinction. We further demonstrate that inhibition of KRAS signaling alone via co-targeting the MAPK and PI3K pathways fails to induce extensive tumor cell death and, therefore, has limited efficacy against PDAC. However, the addition of histone deacetylase (HDAC) inhibitors greatly improves outcomes, reduces the self-renewal of cancer cells, and blocks cancer metastasis in vivo. Our results suggest that targeting HDACs in combination with KRAS or its effector pathways provides an effective strategy for the treatment of PDAC.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Inibidores de Histona Desacetilases/farmacologia , MAP Quinase Quinase Quinases/antagonistas & inibidores , Neoplasias Pancreáticas/tratamento farmacológico , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/farmacologia , Animais , Carcinoma Ductal Pancreático/enzimologia , Carcinoma Ductal Pancreático/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Genes ras , Inibidores de Histona Desacetilases/administração & dosagem , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Camundongos Nus , Mutação , Neoplasias Pancreáticas/enzimologia , Neoplasias Pancreáticas/genética , Inibidores de Proteínas Quinases/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Am J Physiol Gastrointest Liver Physiol ; 292(5): G1347-58, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17272518

RESUMO

Diseases of intestinal inflammation like necrotizing enterocolitis (NEC) are associated with impaired epithelial barrier integrity and the sustained release of intestinal nitric oxide (NO). NO modifies the cytoskeletal regulator RhoA-GTPase, suggesting that NO could affect barrier healing by inhibiting intestinal restitution. We now hypothesize that NO inhibits enterocyte migration through RhoA-GTPase and sought to determine the pathways involved. The induction of NEC was associated with increased enterocyte NO release and impaired migration of bromodeoxyuridine-labeled enterocytes from terminal ileal crypts to villus tips. In IEC-6 enterocytes, NO significantly inhibited enterocyte migration and activated RhoA-GTPase while increasing the formation of stress fibers. In parallel, exposure of IEC-6 cells to NO increased the phosphorylation of focal adhesion kinase (pFAK) and caused a striking increase in cell-matrix adhesiveness, suggesting a mechanism by which NO could impair enterocyte migration. NEC was associated with increased expression of pFAK in the terminal ileal mucosa of wild-type mice and a corresponding increase in disease severity compared with inducible NO synthase knockout mice, confirming the dependence of NO for FAK phosphorylation in vivo and its role in the pathogenesis of NEC. Strikingly, inhibition of the protein tyrosine phosphatase SHP-2 in IEC-6 cells prevented the activation of RhoA by NO, restored focal adhesions, and reversed the inhibitory effects of NO on enterocyte migration. These data indicate that NO impairs mucosal healing by inhibiting enterocyte migration through activation of RhoA in a SHP-2-dependent manner and support a possible role for SHP-2 as a therapeutic target in diseases of intestinal inflammation like NEC.


Assuntos
Inibição de Migração Celular , Enterócitos/fisiologia , Óxido Nítrico/fisiologia , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Animais Recém-Nascidos , Linhagem Celular , Enterocolite Necrosante/patologia , Enterocolite Necrosante/fisiopatologia , Enterócitos/efeitos dos fármacos , Ativação Enzimática , Proteína-Tirosina Quinases de Adesão Focal/biossíntese , Mucosa Intestinal/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Camundongos , Óxido Nítrico/metabolismo , Compostos Nitrosos/farmacologia , Fosforilação , Proteína Tirosina Fosfatase não Receptora Tipo 11 , Proteínas Tirosina Fosfatases/fisiologia , Ratos , Proteínas Tirosina Fosfatases Contendo o Domínio SH2 , Domínios de Homologia de src/fisiologia
10.
J Biol Chem ; 280(10): 8893-900, 2005 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-15632155

RESUMO

RON is a receptor tyrosine kinase in the MET family. We have expressed and purified active RON using the Sf9/baculovirus system. The constructs used in this study comprise the kinase domain alone and the kinase domain plus the C-terminal region. The construct containing the kinase domain alone has a higher specific activity than the construct containing the kinase and C-terminal domains. Purified RON undergoes autophosphorylation, and the exogenous RON C terminus serves as a substrate. Peptides containing a dityrosine motif derived from the C-terminal tail inhibit RON in vitro or when delivered into intact cells, consistent with an autoinhibitory mechanism. Phenylalanine substitutions within these peptides increase the inhibitory potency. Moreover, introduction of these Phe residues into the dityrosine motif of the RON kinase leads to a decrease in kinase activity. Taken together, our data suggest a model in which the C-terminal tail of RON regulates kinase activity via an interaction with the kinase catalytic domain.


Assuntos
Receptores Proteína Tirosina Quinases/metabolismo , Células 3T3 , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Sequência de Bases , Linhagem Celular , Sequência Conservada , Primers do DNA , Cinética , Camundongos , Dados de Sequência Molecular , Fragmentos de Peptídeos/síntese química , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Fosforilação , Reação em Cadeia da Polimerase , Receptores Proteína Tirosina Quinases/química , Spodoptera , Tirosina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA