Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioorg Chem ; 142: 106960, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37944368

RESUMO

Tuberculosis is one of the major causes of death worldwide; more than a million people die every year because of this infection. The constant emergency of Mycobacterium tuberculosis resistant strains against the most used treatments also contributes to the burden caused by this disease. Consequently, the development of new alternative therapies against this disease is constantly required. In recent years, only a few molecules have reached the market as new antituberculosis agents. The mycobacterial cell wall biosynthesis is for a longstanding considered an important target for drug development. Particularly, in M. tuberculosis, the peptidoglycan cross-links are predominantly formed by nonclassical bridges between the third residues of adjacent tetrapeptides. The responsible enzymes for these reactions are ld-transpeptidases (Ldts), for which M. tuberculosis has five paralogues. Although these enzymes are distinct from the penicillin-binding proteins (PBPs), they can also be inactivated by ß-lactam antibiotics, but since M. tuberculosis has a chromosomal ß-lactamase, most of the antibiotics of these classes can be degraded. Thus, to identify alternative scaffolds for the development of new antimicrobials against tuberculosis, we have integrated several fragment-based drug discovery techniques. Based on that, we identified and validated a number of small molecules that could be the starting point in the synthesis of more potent inhibitors against at least two Ldts from M. tuberculosis, LdtMt2 and LdtMt3. Eight identified molecules inhibited the Ldts activity in at least 20%, and three of them have antimycobacterial activity. The cell ultrastructural analysis suggested that one of the best compounds induced severe effects on the septum and cell wall morphologies, which corroborates our target-based approach to identifying new Ldts hits.


Assuntos
Mycobacterium tuberculosis , Peptidil Transferases , Tuberculose , Humanos , Peptidil Transferases/química , Peptidil Transferases/metabolismo , beta-Lactamas/farmacologia , Antibacterianos/farmacologia , Antituberculosos/farmacologia , Tuberculose/microbiologia
2.
Antimicrob Agents Chemother ; 67(3): e0075922, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36815840

RESUMO

Cryptococcosis therapy is often limited by toxicity problems, antifungal tolerance, and high costs. Studies approaching chalcogen compounds, especially those containing selenium, have shown promising antifungal activity against pathogenic species. This work aimed to evaluate the in vitro and in vivo antifungal potential of organoselenium compounds against Cryptococcus neoformans. The lead compound LQA_78 had an inhibitory effect on C. neoformans planktonic cells and dispersed cells from mature biofilms at similar concentrations. The fungal growth inhibition led to an increase in budding cells arrested in the G2/M phase, but the compound did not significantly affect structural cell wall components or chitinase activity, an enzyme that regulates the dynamics of the cell wall. The compound also inhibited titan cell (Tc) and enlarged capsule yeast (NcC) growth and reduced the body diameter and capsule thickness associated with increased capsular permeability of both virulent morphotypes. LQA_78 also reduced fungal melanization through laccase activity inhibition. The fungicidal activity was observed at higher concentrations (16 to 64 µg/mL) and may be associated with augmented plasma membrane permeability, ROS production, and loss of mitochondrial membrane potential. While LQA_78 is a nonhemolytic compound, its cytotoxic effects were cell type dependent, exhibiting no toxicity on Galleria mellonella larvae at a dose ≤46.5 mg/kg. LQA_78 treatment of larvae infected with C. neoformans effectively reduced the fungal burden and inhibited virulent morphotype formation. To conclude, LQA_78 displays fungicidal action and inhibits virulence factors of C. neoformans. Our results highlight the potential use of LQA_78 as a lead molecule for developing novel pharmaceuticals for treating cryptococcosis.


Assuntos
Antifúngicos , Cryptococcus neoformans , Animais , Antifúngicos/uso terapêutico , Cryptococcus neoformans/efeitos dos fármacos , Larva/efeitos dos fármacos , Larva/microbiologia , Mariposas/efeitos dos fármacos , Mariposas/microbiologia , Fatores de Virulência/metabolismo
3.
J Antimicrob Chemother ; 78(4): 1092-1101, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36881722

RESUMO

OBJECTIVES: To develop alginate nanoparticles functionalized with polysorbate 80 (P80) as miltefosine carriers for brain targeting in the oral treatment of cryptococcal meningitis. METHODS: Miltefosine-loaded alginate nanoparticles functionalized or not with P80 were produced by an emulsification/external gelation method and the physicochemical characteristics were determined. The haemolytic activity and cytotoxic and antifungal effects of nanoparticles were assessed in an in vitro model of the blood-brain barrier (BBB). A murine model of disseminated cryptococcosis was used for testing the efficacy of oral treatment with the nanoparticles. In addition, serum biomarkers were measured for toxicity evaluation and the nanoparticle biodistribution was analysed. RESULTS: P80-functionalized nanoparticles had a mean size of ∼300 nm, a polydispersity index of ∼0.4 and zeta potential around -50 mV, and they promoted a sustained drug release. Both nanoparticles were effective in decreasing the infection process across the BBB model and reduced drug cytotoxicity and haemolysis. In in vivo cryptococcosis, the oral treatment with two doses of P80 nanoparticles reduced the fungal burden in the brain and lungs, while the non-functionalized nanoparticles reduced fungal amount only in the lungs, and the free miltefosine was not effective. In addition, the P80-functionalization improved the nanoparticle distribution in several organs, especially in the brain. Finally, treatment with nanoparticles did not cause any toxicity in animals. CONCLUSIONS: These results support the potential use of P80-functionalized alginate nanoparticles as miltefosine carriers for non-toxic and effective alternative oral treatment, enabling BBB translocation and reduction of fungal infection in the brain.


Assuntos
Criptococose , Meningite Criptocócica , Nanopartículas , Camundongos , Animais , Meningite Criptocócica/tratamento farmacológico , Polissorbatos/uso terapêutico , Alginatos/uso terapêutico , Distribuição Tecidual , Encéfalo , Criptococose/tratamento farmacológico , Portadores de Fármacos/uso terapêutico
4.
Med Mycol ; 61(8)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37505455

RESUMO

Candida tropicalis is a notable species of the Candida genus representing an impressive epidemiology in tropical regions, especially in South America and Asia, where India already presents the species as the first in Candida epidemiology. Candida tropicalis has also shown a worrying antifungal resistance profile in recent years. It is essential to highlight that each pathogenic species of the Candida genus has a particular biology; however, Candida virulence factors are almost entirely based on studies with C. albicans. The intrinsic resistance of C. krusei to some azoles, the intrinsic osmotolerance of C. tropicalis, and the multidrug resistance of C. auris are just a few examples of how the biology of each Candida species is unique. Despite being a phylogenetically close species, C. tropicalis can support 15% NaCl, antagonistically metabolize and signal N-acetylglucosamine, encode 16 reported ALS genes, and other specificities discussed here compared to C. albicans. It is essential to clarify the details of the C. tropicalis infectious process, including identifying the participating secreted enzyme(s), the factors responsible for tissue damage, and the mechanisms underlying the morphogenesis and tolerance signaling pathways. In this review, we thoroughly assembled what is known about the main virulence factors of C. tropicalis, highlighting the missing pieces to stimulate further research with C. tropicalis and other non-Candida albicans species.


Assuntos
Antifúngicos , Candida tropicalis , Animais , Candida tropicalis/genética , Antifúngicos/uso terapêutico , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Candida , Candida albicans , Farmacorresistência Fúngica , Testes de Sensibilidade Microbiana/veterinária
5.
Appl Microbiol Biotechnol ; 107(19): 6103-6120, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37561179

RESUMO

Bacillus subtilis species complex is known as lipopeptide-producer with biotechnological potential for pharmaceutical developments. This study aimed to identify lipopeptides from a bacterial isolate and evaluate their antifungal effects. Here, we isolated and identified a lipopeptide-producing bacterium as a species of Bacillus subtilis complex (strain UL-1). Twenty lipopeptides (six iturins, six fengycins, and eight surfactins) were identified in the crude extract (CE) and fractions (F1, F2, F3, and F4), and the highest content of total lipopeptides was observed in CE and F2. The chemical quantification data corroborate with the hemolytic and antifungal activities that CE and F2 were the most hemolytic and inhibited the fungal growth at lower concentrations against Fusarium spp. In addition, they caused morphological changes such as shortening and/or atypical branching of hyphae and induction of chlamydospore-like structure formation, especially in Fusarium solani. CE was the most effective in inhibiting the biofilm formation and in disrupting the mature biofilm of F. solani reducing the total biomass and the metabolic activity at concentrations ≥ 2 µg/mL. Moreover, CE significantly inhibited the adherence of F. solani conidia on contact lenses and nails as well as disrupted the pre-formed biofilms on nails. CE at 100 mg/kg was nontoxic on Galleria mellonella larvae, and it reduced the fungal burden in larvae previously infected by F. solani. Taken together, the lipopeptides obtained from strain UL-1 demonstrated a potent anti-Fusarium effect inducing morphological alterations and antibiofilm activities. Our data open further studies for the biotechnological application of these lipopeptides as potential antifungal agents. KEY POINTS: • Lipopeptides inhibit Fusarium growth and induce chlamydospore-like structures. • Lipopeptides hamper the adherence of conidia and biofilms of Fusarium solani. • Iturins, fengycins, and surfactins were associated with antifungal effects.


Assuntos
Antifúngicos , Bacillus subtilis , Bacillus subtilis/metabolismo , Antifúngicos/química , Esporos Fúngicos/metabolismo , Biofilmes , Lipopeptídeos/metabolismo , Peptídeos Cíclicos/metabolismo , Doenças das Plantas/microbiologia
6.
Antimicrob Agents Chemother ; 65(9): e0069921, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34152816

RESUMO

Sporotrichosis has become an important zoonosis in Brazil, and Sporothrix brasiliensis is the primary species transmitted by cats. Improvement of animal treatment will help control and limit the spread and geographic expansion of sporotrichosis. Accordingly, buparvaquone, an antiprotozoal hydroxynaphthoquinone agent marketed as Butalex, was evaluated in vitro and in vivo against feline-borne isolates of S. brasiliensis. Buparvaquone inhibited in vitro fungal growth at concentrations 4-fold lower than itraconazole (the first-choice antifungal used for sporotrichosis) and was 408 times more selective for S. brasiliensis than mammalian cells. Yeasts treated with a subinhibitory concentration of buparvaquone exhibited mitochondrial dysfunction, reactive oxygen species and neutral lipid accumulation, and impaired plasma membranes. Scanning electron microscopy images also revealed buparvaquone altered cell wall integrity and induced cell disruption. In vivo experiments in a Galleria mellonella model revealed that buparvaquone (single dose of 5 mg/kg of body weight) is more effective than itraconazole against infections with S. brasiliensis yeasts. Combined, our results indicate that buparvaquone has a great in vitro and in vivo antifungal activity against S. brasiliensis, revealing the potential application of this drug as an alternative treatment for feline sporotrichosis.


Assuntos
Sporothrix , Esporotricose , Animais , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Gatos , Testes de Sensibilidade Microbiana , Naftoquinonas , Esporotricose/tratamento farmacológico
7.
Mycoses ; 64(3): 232-244, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33098146

RESUMO

Fungal infections are responsible for high mortality rates in immunocompromised and high-risk surgical patients. Therapy failures during the last decades due to increasing multidrug resistance demand innovative strategies for novel and effective antifungal drugs. Synergistic combinations of antifungals with non-antifungal agents highlight a pragmatic strategy to reduce the development of drug resistance and potentially repurpose known compounds with other functions to bypass costly and time-consuming novel drug development.


Assuntos
Antifúngicos/farmacologia , Sinergismo Farmacológico , Fungos/efeitos dos fármacos , Micoses/tratamento farmacológico , Animais , Antifúngicos/isolamento & purificação , Antifúngicos/uso terapêutico , Farmacorresistência Fúngica , Humanos , Camundongos , Testes de Sensibilidade Microbiana
8.
Arch Microbiol ; 202(4): 773-784, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31832690

RESUMO

Cryptococcosis is a common opportunistic infection in patients with advanced HIV infection and may also affect immunocompetent patients. The available antifungal agents are few and other options are needed for the cryptococcosis treatment. In this work, we first analyzed the virulence of twelve C. neoformans and C. gattii strains assessing capsule thickness, biofilms formation, and survival and morbidity in the invertebrate model of Galleria mellonella and then we evaluated the antifungal activity of voriconazole (VRC) in vitro and in vivo also using G. mellonella. Our results showed that all Cryptococcus spp. isolates were able to produce capsule and biofilms, and were virulent using G. mellonella model. The VRC has inhibitory activity on planktonic cells with MIC values ranging from 0.03 to 0.25 µg/mL on Cryptococcus spp.; and these isolates were more tolerant to fluconazole (ranging from 0.25 to 16 µg/mL), the triazol agent often recommended alone or in combination with amphotericin B in the cryptococcosis therapy. In contrast, mature biofilms were less susceptible to the VRC treatment. The VRC (10 or 20 mg/kg) treatment of infected G. mellonella larvae significantly increased the larval survival when compared to the untreated group for the both Cryptococcus species and significantly decreased the fungal burden and dissemination in the larval tissue. Our findings corroborate with the literature data, supporting the potential use of VRC as an alternative for cryptococcosis treatment. Here, we emphasize the use of G. mellonella larval model as an alternative animal model for studies of antifungal efficacy on mycosis, including cryptococcosis.


Assuntos
Criptococose , Cryptococcus gattii/efeitos dos fármacos , Mariposas/microbiologia , Voriconazol/farmacologia , Anfotericina B/farmacologia , Animais , Antifúngicos/farmacologia , Biofilmes/efeitos dos fármacos , Modelos Animais de Doenças , Fluconazol/farmacologia , Humanos , Larva/microbiologia , Testes de Sensibilidade Microbiana
9.
Mycoses ; 63(10): 1047-1059, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32772402

RESUMO

Invasive fungal infections (IFIs) in the central nervous system (CNS) are particularly hard to treat and are associated with high morbidity and mortality rates. Four chemical classes of systemic antifungal agents are used for the treatment of IFIs (eg meningitis), including polyenes, triazoles, pyrimidine analogues and echinocandins. This review will address all of these classes and discuss their penetration and accumulation in the CNS. Treatment of fungal meningitis is based on the antifungal that shows good penetration and accumulation in the CNS. Pharmacokinetic data concerning the entry of antifungal agents into the intracranial compartments are faulty. This review will provide an overview of the ability of systemic antifungals to penetrate the CNS, based on previously published drug physicochemical properties and pharmacokinetic data, for evaluation of the most promising antifungal drugs for the treatment of fungal CNS infections. The studies selected and discussed in this review are from 1990 to 2019.


Assuntos
Antifúngicos/farmacocinética , Infecções Fúngicas do Sistema Nervoso Central/tratamento farmacológico , Antifúngicos/uso terapêutico , Equinocandinas/farmacocinética , Equinocandinas/uso terapêutico , Humanos , Infecções Fúngicas Invasivas/tratamento farmacológico , Meningite Fúngica/tratamento farmacológico , Polienos/farmacocinética , Polienos/uso terapêutico , Pirimidinas/farmacocinética , Pirimidinas/uso terapêutico , Triazóis/farmacocinética , Triazóis/uso terapêutico
10.
Artigo em Inglês | MEDLINE | ID: mdl-29844051

RESUMO

Cryptococcus spp. are common opportunistic fungal pathogens, particularly in HIV patients. The approved drug miltefosine (MFS) has potential as an alternative antifungal against cryptococcosis; however, the mechanism of action of MFS in Cryptococcus is poorly understood. Here, we examined the effects of MFS on C. neoformans and C. gattii yeasts (planktonic and biofilm lifestyles) to clarify its mechanism of action. MFS presented inhibitory and fungicidal effects against planktonic Cryptococcus cells, with similar activities against dispersion biofilm cells, while sessile biofilm cells were less sensitive to MFS. Interestingly, MFS had postantifungal effect on Cryptococcus, with a proliferation delay of up to 8.15 h after a short exposure to fungicidal doses. MFS at fungicidal concentrations increased the plasma membrane permeability, likely due to a direct interaction with ergosterol, as suggested by competition assays with exogenous ergosterol. Moreover, MFS reduced the mitochondrial membrane potential, increased reactive oxygen species (ROS) production, and induced DNA fragmentation and condensation, all of which are hallmarks of apoptosis. Transmission electron microscopy analysis showed that MFS-treated yeasts had a reduced mucopolysaccharide capsule (confirmed by morphometry with light microscopy), plasma membrane irregularities, mitochondrial swelling, and a less conspicuous cell wall. Our results suggest that MFS increases the plasma membrane permeability in Cryptococcus via an interaction with ergosterol and also affects the mitochondrial membrane, eventually leading to apoptosis, in line with its fungicidal activity. These findings confirm the potential of MFS as an antifungal against C. neoformans and C. gattii and warrant further studies to establish clinical protocols for MFS use against cryptococcosis.


Assuntos
Antifúngicos/farmacologia , Apoptose/efeitos dos fármacos , Cryptococcus gattii/efeitos dos fármacos , Cryptococcus neoformans/efeitos dos fármacos , Fosforilcolina/análogos & derivados , Anfotericina B/farmacologia , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Criptococose/tratamento farmacológico , Criptococose/microbiologia , Cryptococcus gattii/metabolismo , Cryptococcus gattii/ultraestrutura , Cryptococcus neoformans/metabolismo , Cryptococcus neoformans/ultraestrutura , Fragmentação do DNA/efeitos dos fármacos , Ergosterol/metabolismo , Cápsulas Fúngicas/efeitos dos fármacos , Cápsulas Fúngicas/metabolismo , Cápsulas Fúngicas/ultraestrutura , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Infecções Oportunistas/tratamento farmacológico , Infecções Oportunistas/microbiologia , Fosforilcolina/farmacologia , Plâncton/efeitos dos fármacos , Plâncton/crescimento & desenvolvimento , Espécies Reativas de Oxigênio/agonistas , Espécies Reativas de Oxigênio/metabolismo
11.
Med Mycol ; 56(3): 288-296, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28575449

RESUMO

In severe cases of sporotrichosis, it is recommended to use amphotericin B deoxycholate (D-AMB) or its lipid formulations and/or in association with itraconazole (ITC). Our aim was to evaluate the antifungal efficacy of a poly-aggregated amphotericin B (P-AMB), a nonlipid formulation, compared with D-AMB on systemic sporotrichosis caused by Sporothrix brasiliensis. In vitro assays showed that Sporothrix schenckii sensu stricto and S. brasiliensis yeast clinical isolates were susceptible to low concentrations of P-AMB and D-AMB. Although P-AMB presented a higher minimal inhibitory concentration (MIC) compared to D-AMB, its cytotoxic effect on renal cells and erythrocytes was lower. For the in vivo assays, male BALB/c mice were intravenously infected with S. brasiliensis yeasts, and P-AMB or D-AMB was administered 3 days post-infection. The efficacy of five therapeutic regimens was tested: intravenous monotherapy with P-AMB or D-AMB, intravenous pulsed-therapy with P-AMB or D-AMB, and intravenous therapy with P-AMB, followed by oral ITC. These treatments increased murine survival and controlled the fungal burden in the liver, spleen, lungs, and kidneys. However, only D-AMB monotherapy or the pulsed-therapies with D-AMB or P-AMB led to 100% survival of the mice 45 days post-infection; only pulsed administration of D-AMB was able to control the fungal load in all organs 45 days post-infection. Accordingly, the histopathological findings showed reductions in the fungal burden and inflammatory reactions in these treatment regimens. Together, our results suggest that the P-AMB formulation could be considered as an alternative drug to D-AMB for treating disseminated sporotrichosis.


Assuntos
Anfotericina B/uso terapêutico , Antifúngicos/uso terapêutico , Esporotricose/tratamento farmacológico , Anfotericina B/administração & dosagem , Anfotericina B/química , Anfotericina B/farmacologia , Animais , Antifúngicos/administração & dosagem , Antifúngicos/química , Antifúngicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Contagem de Colônia Microbiana , Ácido Desoxicólico/administração & dosagem , Ácido Desoxicólico/química , Ácido Desoxicólico/farmacologia , Ácido Desoxicólico/uso terapêutico , Modelos Animais de Doenças , Combinação de Medicamentos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Sporothrix/efeitos dos fármacos , Sporothrix/crescimento & desenvolvimento , Esporotricose/mortalidade , Taxa de Sobrevida
12.
Mem Inst Oswaldo Cruz ; 111(8): 523-7, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27581121

RESUMO

Sporotrichosis is the most frequent subcutaneous mycosis in the world and its increasing incidence has led to the search for new therapeutic options for its treatment. In this study, we demonstrated that three structural analogues of miltefosine (TCAN26, TC19, and TC70) showed inhibitory activity against Sporothrix schenckii sensu stricto and that TCAN26 was more active in vitro than miltefosine against several isolates. Scanning electron microscopy showed that S. schenckii exposure to TCAN26 resulted in cells that were slightly more elongated than untreated cells. Transmission electron microscopy showed that TCAN26 treatment induced loss of the regular cytoplasmic electron-density and altered the cell envelope (disruption of the cell membrane and cell wall, and increased cell wall thickness). Additionally, TCAN26 concentrations required to kill S. schenckii cells were lower than concentrations that were cytotoxic in mammalian cells, and TCAN26 was more selective than miltefosine. Thus, the adamantylidene-substituted alkylphosphocholine TCAN26 is a promising molecule for the development of novel antifungal compounds, although further investigations are required to elucidate the mode of action of TCAN26 in S. schenckii cells.


Assuntos
Adamantano/farmacocinética , Antifúngicos/farmacologia , Fosforilcolina/análogos & derivados , Sporothrix/efeitos dos fármacos , Adamantano/química , Antifúngicos/química , Membrana Celular/efeitos dos fármacos , Substituição de Medicamentos , Humanos , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Fosforilcolina/química , Fosforilcolina/farmacologia , Sporothrix/classificação , Sporothrix/ultraestrutura
13.
Mem Inst Oswaldo Cruz ; 111(6): 407-10, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27304096

RESUMO

The aim of this study was to identify Candida species isolated from women diagnosed with recurrent vulvovaginal candidiasis (RVVC) and their partners; and to evaluate the fluconazole (FLZ) susceptibility of the isolates. In a period of six years, among 172 patients diagnosed with vulvovaginal candidiasis, 13 women that presented RVVC and their partners were selected for this investigation. The isolates were obtained using Chromagar Candida medium, the species identification was performed by phenotypic and molecular methods and FLZ susceptibility was evaluated by E-test. Among 26 strains we identified 14 Candida albicans, six Candida duobushaemulonii, four Candida glabrata, and two Candida tropicalis. Agreement of the isolated species occurred in 100% of the couples. FLZ low susceptibility was observed for all isolates of C. duobushaemulonii (minimal inhibitory concentration values from 8-> 64 µg/mL), two C. glabrata isolates were FLZ-resistant and all C. albicans and C. tropicalis isolates were FLZ-susceptible. This report emphasises the importance of accurate identification of the fungal agents by a reliable molecular technique in RVVC episodes besides the lower antifungal susceptibility profile of this rare pathogen C. duobushaemulonii to FLZ.


Assuntos
Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Candidíase Vulvovaginal/microbiologia , Farmacorresistência Fúngica , Fluconazol/farmacologia , Brasil , Candida/classificação , Candida/genética , Feminino , Humanos , Masculino , Testes de Sensibilidade Microbiana , Técnicas de Tipagem Micológica , Recidiva
14.
Med Mycol ; 53(1): 34-41, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25306202

RESUMO

Sporothrix brasiliensis is a highly virulent member of the S. schenckii complex, which is responsible for the emergence of the epidemic sporotrichosis in southeastern Brazil over the last two decades. There are no in vivo studies on the sensitivity of S. brasiliensis to the therapeutic regimens used to treat sporotrichosis. Here, we evaluated the efficacy and safety of antifungal treatments against S. brasiliensis using a murine model of disseminated sporotrichosis. In vitro, S. brasiliensis yeasts were sensitive to low concentrations of amphotericin B-deoxycholate (AMB-d) and itraconazole (ITZ), the latter having greater selectivity toward the fungus. The following treatment regimens were tested in vivo: intravenous AMB-d for 7 days post-infection (p.i.), oral ITZ for up to 30 days p.i., and AMB-d followed by ITZ (AMB-d/ITZ). AMB-d and AMB-d/ITZ led to 100% survival of infected mice at the end of the 45-day experimental period. Although all treatments extended mice survival, only AMB-d and AMB-d/ITZ significantly reduced fungal load in all organs, but AMB-d/ITZ led to a more consistent decrease in overall fungal burden. No treatment increased the levels of serum toxicity biomarkers. Taken together, our results indicate that AMB-d/ITZ is the best therapeutic option for controlling disseminated sporotrichosis caused by S. brasiliensis.


Assuntos
Anfotericina B/uso terapêutico , Antifúngicos/uso terapêutico , Itraconazol/uso terapêutico , Sporothrix/efeitos dos fármacos , Esporotricose/tratamento farmacológico , Animais , Contagem de Colônia Microbiana , Modelos Animais de Doenças , Tratamento Farmacológico/métodos , Masculino , Camundongos Endogâmicos BALB C , Análise de Sobrevida , Resultado do Tratamento
15.
Med Mycol ; 53(2): 178-88, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25394542

RESUMO

The in vitro activity of the antifungal agents amphotericin B (AMB), itraconazole (ITC), posaconazole (PSC), voriconazole (VRC), and terbinafine (TRB) against 32 Brazilian isolates of Sporothrix brasiliensis, including 16 isolates from a recent (2011-2012) epidemic in Rio de Janeiro state, was examined. We describe and genotype new isolates and clustered them with 16 older (from 2004 or earlier) S. brasiliensis isolates by phylogenetic analysis. We tested both the yeast and the mycelium form of all isolates using broth microdilution methods based on the reference protocols M38-A2 and M27-A3 (recommended by the Clinical and Laboratory Standards Institute). Considering minimum inhibitory concentrations (MICs) and minimum fungicidal concentrations (MFCs), TRB was found to be the most active drug in vitro for both fungal forms, followed by PSC. Several isolates showed high MICs for AMB and/or ITC, which are currently used as first-line therapy for sporotrichosis. VRC displayed very low activity against S. brasiliensis isolates. The primary morphological modification observed on treated yeasts by transmission electron microscopy analysis was changes in cell wall. Our results indicate that TRB is the antifungal with the best in vitro activity against S. brasiliensis and support the use of TRB as a promising option for the treatment of cutaneous and/or lymphocutaneous sporotrichosis.


Assuntos
Anfotericina B/farmacologia , Antifúngicos/farmacologia , Naftalenos/farmacologia , Sporothrix/efeitos dos fármacos , Esporotricose/microbiologia , Brasil/epidemiologia , Calmodulina/genética , Parede Celular/ultraestrutura , Análise por Conglomerados , DNA Fúngico/química , DNA Fúngico/genética , Surtos de Doenças , Proteínas Fúngicas/genética , Humanos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA , Sporothrix/classificação , Sporothrix/genética , Sporothrix/ultraestrutura , Esporotricose/epidemiologia , Terbinafina
16.
BMC Complement Altern Med ; 15: 68, 2015 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-25886244

RESUMO

BACKGROUND: Biofilm formation is important in Candida albicans pathogenesis and constitutes a mechanism of antifungal resistance. Thus, we evaluated the effect of proanthocyanidins polymer-rich fractions from Stryphnodendron adstringens (fraction F2 and subfraction F2.4) against C. albicans biofilms. METHODS: Firstly, the antifungal activity of F2 and F2.4 against planktonic cells of Candida albicans (ATCC 10231) was determined using broth microdilution method. Anti-biofilm effect of F2 and F2.4 was evaluated during biofilm formation or on mature biofilm of C. albicans and compared with standard antifungals amphotericin B and fluconazole. Metabolic activity of sessile and dispersion cells from biofilms after antifungal treatments were measured using a tetrazolium reduction assay and the biofilm total biomass was quantified by crystal violet-based assay. Morphological alterations after treatments were observed using scanning electron microscopy. RESULTS: The anti-biofilm effect of F2 and F2.4 were comparable to standard antifungals (amphotericin B and fluconazole). F2 and F2.4 treatments reduced biofilm metabolic activity (in sessile and in dispersion cells) during biofilm formation, and in mature biofilms, unlike fluconazole, which only prevents the biofilm formation. Treatments with F2, F2.4 or fluconazole reduced biofilm biomass during biofilm formation, but not in mature biofilm. Amphotericin B presented higher inhibitory effect on biofilm formation and on mature biofilm of C. albicans. F2 and F2.4 treatments led to the appearance of dumbbell-shaped blastoconidia and of blastoconidia clusters in biofilms. CONCLUSION: Proanthocyanidins polymer-rich fractions from S. adstringens successfully inhibited C. albicans planktonic growth and biofilm development, and they represent a potential new agent for the treatment of biofilm-associated candidiasis.


Assuntos
Antifúngicos/farmacologia , Biofilmes/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Fabaceae/química , Extratos Vegetais/farmacologia , Proantocianidinas/farmacologia , Anfotericina B/farmacologia , Candida albicans/crescimento & desenvolvimento , Fluconazol/farmacologia , Testes de Sensibilidade Microbiana , Taninos/farmacologia , Sais de Tetrazólio
17.
Mem Inst Oswaldo Cruz ; 109(2): 220-8, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24714966

RESUMO

The microbial synthesis of nanoparticles is a green chemistry approach that combines nanotechnology and microbial biotechnology. The aim of this study was to obtain silver nanoparticles (SNPs) using aqueous extract from the filamentous fungus Fusarium oxysporum as an alternative to chemical procedures and to evaluate its antifungal activity. SNPs production increased in a concentration-dependent way up to 1 mM silver nitrate until 30 days of reaction. Monodispersed and spherical SNPs were predominantly produced. After 60 days, it was possible to observe degenerated SNPs with in additional needle morphology. The SNPs showed a high antifungal activity against Candida and Cryptococcus , with minimum inhibitory concentration values ≤ 1.68 µg/mL for both genera. Morphological alterations of Cryptococcus neoformans treated with SNPs were observed such as disruption of the cell wall and cytoplasmic membrane and lost of the cytoplasm content. This work revealed that SNPs can be easily produced by F. oxysporum aqueous extracts and may be a feasible, low-cost, environmentally friendly method for generating stable and uniformly sized SNPs. Finally, we have demonstrated that these SNPs are active against pathogenic fungi, such as Candida and Cryptococcus.


Assuntos
Antifúngicos/metabolismo , Candida/efeitos dos fármacos , Cryptococcus/efeitos dos fármacos , Fusarium/metabolismo , Nanopartículas Metálicas , Prata/metabolismo , Antifúngicos/uso terapêutico , Candida/classificação , Candida/ultraestrutura , Extratos Celulares , Cryptococcus/classificação , Cryptococcus/ultraestrutura , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Inibidores do Crescimento , Nanopartículas Metálicas/uso terapêutico , Testes de Sensibilidade Microbiana , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Prata/análise , Prata/uso terapêutico
18.
Eur J Pharm Sci ; 192: 106638, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37967657

RESUMO

In this study, nanostructured lipid carriers (NLC) were developed and employed to obtain in situ thermosensitive formulations for the ductal administration and prolonged retention of drugs as a new strategy for breast cancer local treatment. NLC size was influenced by the type and concentration of the oil phase, surfactants, and drug incorporation, ranging from 221.6 to 467.5 nm. The type of liquid lipid influenced paclitaxel and 5-fluorouracil cytotoxicity, with tributyrin-containing NLC reducing IC50 values by 2.0-7.0-fold compared to tricaprylin NLC in MCF-7, T-47D and MDA-MB-231 cells. In spheroids, the NLCs reduced IC50 compared to either drug solution (3.2-6.2-fold). Although a significant reduction (1.26 points, p < 0.001) on the health index of Galleria mellonella larvae was observed 5 days after NLC administration, survival was not significantly reduced. To produce thermosensitive gels, the NLCs were incorporated in a poloxamer (11 %, w/w) dispersion, which gained viscosity (2-fold) at 37 °C. After 24 h, ∼53 % of paclitaxel and 83 % of 5-fluorouracil were released from the NLC; incorporation in the poloxamer gel further prolonged release. Intraductal administration of NLC-loaded gel increased the permanence of hydrophilic (2.2-3.0-fold) and lipophilic (2.1-2.3-fold) fluorescent markers in the mammary tissue compared to the NLC (as dispersion) and the markers solutions. In conclusion, these results contribute to improving our understanding of nanocarrier design with increased cytotoxicity and prolonged retention for the intraductal route. Tributyrin incorporation increased the cytotoxicity of paclitaxel and 5-fluorouracil in monolayer and spheroids, while NLC incorporation in thermosensitive gels prolonged tissue retention of both hydrophilic and hydrophobic compounds.


Assuntos
Neoplasias da Mama , Nanoestruturas , Humanos , Feminino , Portadores de Fármacos/química , Neoplasias da Mama/tratamento farmacológico , Poloxâmero , Lipídeos/química , Nanoestruturas/química , Géis/química , Paclitaxel , Fluoruracila , Tamanho da Partícula
19.
Braz J Microbiol ; 55(1): 383-389, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38110707

RESUMO

Fungal infections affect millions of people worldwide, and the several cases are related to invasive infections, which is a problem mainly for immunocompromised people, such as transplant and cancer patients with high mortality and morbidity rates. In addition, the number of emerging and multidrug-resistant fungal species has increased in the last decade. The search for new antifungal compounds is necessary, due to the increase in cases of resistance and the toxicity of drugs used in fungal infection treatment. This work aimed to study the antifungal activity of cercosporamide produced by Phaeosphaeriaceae GV-1. Cercosporamide was tested against pathogenic fungi by determining the minimum inhibitory (MIC) and minimum fungicidal (MFC) concentrations, using the broth microdilution method. Cercosporamide showed antifungal activity in vitro against 13 of 16 strains of medical importance tested, with the most susceptible species being Candida tropicalis, with MIC and MFC of 15.6 µg/mL. Thus, cercosporamide might be considered a promising therapeutic antifungal agent.


Assuntos
Antifúngicos , Benzofuranos , Humanos , Antifúngicos/farmacologia , Fungos , Testes de Sensibilidade Microbiana
20.
Eur J Pharm Sci ; 192: 106635, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37952683

RESUMO

Seriniquinone (SQ) was initially described by our group as an antimelanoma drug candidate and now also as an antifungal drug candidate. Despite its promising in vitro effects, SQ translation has been hindered by poor water-solubility. In this paper, we described the challenging nanoformulation process of SQ, which culminated in the selection of a phosphatidylcholine-based lamellar phase (PLP1). Liposomes and nanostructured lipid carriers were also evaluated but failed to encapsulate the compound. SQ-loaded PLP1 (PLP1-SQ) was characterized for the presence of sedimented or non-dissolved SQ, rheological and thermal behavior, and irritation potential with hen's egg test on the chorioallantoic membrane (HET-CAM). PLP1 influence on transepidermal water loss (TEWL) and skin penetration of SQ was assessed in a porcine ear skin model, while biological activity was evaluated against melanoma cell lines (SK-MEL-28 and SK-MEL-147) and C. albicans SC5314. Despite the presence of few particles of non-dissolved SQ (observed under the microscope 2 days after formulation obtainment), PLP1 tripled SQ retention in viable skin layers compared to SQ solution at 12 h. This effect did not seem to relate to formulation-induced changes on the barrier function, as no increases in TEWL were observed. No sign of vascular toxicity in the HET-CAM model was observed after cutaneous treatment with PLP1. SQ activity was maintained on melanoma cells after 48 h-treatment (IC50 values of 0.59-0.98 µM) whereas the minimum inhibitory concentration (MIC) against C. albicans after 24 h-treatment was 32-fold higher. These results suggest that a safe formulation for SQ topical administration was developed, enabling further in vivo studies.


Assuntos
Melanoma , Micoses , Neoplasias Cutâneas , Animais , Feminino , Suínos , Galinhas , Melanoma/metabolismo , Pele/metabolismo , Neoplasias Cutâneas/metabolismo , Candida albicans , Água/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA