Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Biol Reprod ; 100(1): 41-48, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30010721

RESUMO

Atrazine, a commonly used herbicide, suppresses the luteinizing hormone (LH) surge in female rats, although the underlying mechanism remains unclear. Kisspeptin, encoded by the Kiss1 gene, is a hypothalamic peptide that controls gonadotropin-releasing hormone (GnRH) release from the GnRH neurons. Kisspeptin neurons in the anteroventral periventricular nucleus (AVPV) are involved in regulating pre-ovulatory GnRH and LH surge. To clarify the effect of atrazine on the LH surge in female rats, we investigated its effects on hypothalamic GnRH and kisspeptin. Ovariectomized female rats in a high-dose estradiol supplementation model were orally administered vehicle or 100 mg/kg of atrazine once daily for 5 days. This attenuated the LH surge but did not affect baseline LH levels, with no difference in hypothalamic GnRH levels between the vehicle-treated and atrazine-treated animals. After the fifth treatment, subcutaneous administration of kisspeptin (at 0, 0.1, 1, and 10 nmol/kg) induced a dose-dependent LH release almost equivalent in the vehicle- and atrazine-treated animals, suggesting that GnRH neurons maintain normal responsiveness to kisspeptin. However, Kiss1 mRNA expression levels in the AVPV were significantly reduced in the atrazine-treated animals. Given the normal response of GnRH neurons to exogenously administered kisspeptin, the suppressive effect of atrazine may be explained by suppression of Kiss1 expression in the AVPV leading to the attenuation of kisspeptin release from kisspeptin neurons in the AVPV. Further studies are warranted to elucidate more precisely the mechanism of atrazine's involvement in the suppression of Kiss1 mRNA expression in the AVPV.


Assuntos
Atrazina/farmacologia , Hipotálamo Anterior/efeitos dos fármacos , Hipotálamo Anterior/metabolismo , Kisspeptinas/genética , Hormônio Luteinizante/sangue , Animais , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Estradiol/farmacologia , Feminino , Hormônio Liberador de Gonadotropina/metabolismo , Kisspeptinas/metabolismo , Kisspeptinas/farmacologia , Hormônio Luteinizante/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar
2.
Gen Comp Endocrinol ; 193: 121-9, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23851104

RESUMO

Age-related disappearance of the LH surge is one of major biomarkers of reproductive aging in female rats. Kisspeptin neurons in the hypothalamic anteroventral periventricular nucleus (AVPV) are proposed as the critical regulator of the preovulatory LH surge in response to estrogenic positive feedback. Here we investigated the possible involvement of the AVPV kisspeptin neurons in the disappearance of the LH surge in middle-age rats. Middle-age rats exhibiting persistent estrus (M-PE) did not show an LH surge although neither Kiss1 mRNA nor peptide in the AVPV was differentially expressed when compared to young rats exhibiting normal estrous cycles (YN). M-PE released LH in response to exogenous kisspeptin in a similar dose-dependent manner as YN, suggesting that their GnRH neurons still maintained responsiveness to kisspeptin. To investigate the estrogenic positive feedback effect on kisspeptin neurons in the AVPV, rats were ovariectomized and supplemented with estradiol (OVX+E2). We performed in situ hybridization and immunohistochemistry for Kiss1 mRNA and cFos, respectively, and found that M-PE exhibited a significantly lower percentage of Kiss1 mRNA positive neurons with cFos immunoreactivity, although the total number of kisspeptin neurons was not different from that in cyclic rats. Furthermore, OVX+E2 M-PE did not show the surge-like LH release under high estradiol administration while YN did. Thus our current study suggests that the reduced responsiveness of the AVPV kisspeptin neurons to estrogenic positive feedback presumably results in the decrease in kisspeptin secretion from neurons and eventually causes the age-related disappearance of the LH surge in middle age female rats.


Assuntos
Kisspeptinas/metabolismo , Hormônio Luteinizante/metabolismo , Neurônios/metabolismo , Animais , Estradiol/farmacologia , Feminino , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Neurônios/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real
3.
Neuromuscul Disord ; 33(10): 737-743, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37666691

RESUMO

Duchenne muscular dystrophy (DMD) is a genetic disease characterized by progressive muscle loss caused by mutations in dystrophin, resulting in decreased dystrophin levels. Dystrophin protein expression is a biomarker used to evaluate treatments that restore patient dystrophin levels. Currently, a semiquantitative assay using western blotting, which normalizes dystrophin expression to that of a control population, is used for regulatory filing. However, the current methods are limited in terms of sensitivity, quantification, and reproducibility. To address this, a highly sensitive and quantitative sandwich immune assay using Single Molecule Counting technology was established, with recombinant dystrophin protein as the calibrator. Capture and detection antibodies were selected to detect full-length dystrophin. Using this optimized assay, dystrophin levels in muscle samples from Myotonic Dystrophy (n = 9) and DMD (n = 8) subjects were 93.2 ± 31.9 (range: 49.4-145.3) and 14.5 ± 6.8 (range: 6.18-22.6) fmol/total protein mg, respectively. The lowest concentration of dystrophin measured in the DMD samples was 5 times higher than that in the lower limit of quantitation, a level not detected by western blotting. These data indicate that this assay accurately and sensitively measured dystrophin protein and may be useful in clinical trials assessing dystrophin restoration therapies.


Assuntos
Distrofina , Distrofia Muscular de Duchenne , Humanos , Distrofina/genética , Distrofina/metabolismo , Reprodutibilidade dos Testes , Distrofia Muscular de Duchenne/genética , Músculos , Tecnologia
4.
Neuromuscul Disord ; 33(4): 302-308, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36871413

RESUMO

Duchenne muscular dystrophy (DMD) is the most severe form of muscular dystrophy that is caused by lack of dystrophin, a critical structural protein in skeletal muscle. DMD treatments, and quantitative biomarkers to assess the efficacy of potential treatments, are urgently needed. Previous evidence has shown that titin, a muscle cell protein, is increased in the urine of patients with DMD, suggesting its usefulness as a DMD biomarker. Here, we demonstrated that the elevated titin in urine is directly associated with the lack of dystrophin and urine titin responses to drug treatment. We performed a drug intervention study using mdx mice, a DMD mouse model. We showed that mdx mice, which lack dystrophin due to a mutation in exon 23 of the Dmd gene, have elevated urine titin. Treatment with an exon skipper that targets exon 23 rescued muscle dystrophin level and dramatically decreased urine titin in mdx mice and correlates with dystrophin expression. We also demonstrated that titin levels were significantly increased in the urine of patients with DMD. This suggests that elevated urine titin level might be a hallmark of DMD and a useful pharmacodynamic marker for therapies designed to restore dystrophin levels.


Assuntos
Distrofia Muscular de Duchenne , Camundongos , Animais , Distrofia Muscular de Duchenne/genética , Distrofina/genética , Camundongos Endogâmicos mdx , Conectina/urina , Músculo Esquelético/metabolismo , Biomarcadores/metabolismo , Modelos Animais de Doenças , Proteínas Quinases/metabolismo
5.
Toxicology ; 389: 130-138, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28666936

RESUMO

Accurate risk assessment for drug-induced seizure is expected to be performed before entering clinical studies because of its severity and fatal damage to drug development. Induced pluripotent stem cell (iPSC) technology has allowed the use of human neurons and glial cells in toxicology studies. Recently, several studies showed the advantage of co-culture system of human iPSC (hiPSC)-derived neurons with rodent/human primary astrocytes regarding neuronal functions. However, the application of hiPSC-derived neurons for seizure risk assessment has not yet been fully addressed, and not at all when co-cultured with hiPSC-derived astrocytes. Here, we characterized hiPSC-derived neurons co-cultured with hiPSC-derived astrocytes to discuss how hiPSC-derived neurons are useful to assess seizure risk of drugs. First, we detected the frequency of spikes and synchronized bursts hiPSC-derived neurons when co-cultured with hiPSC-derived astrocytes for 8 weeks. This synchronized burst was suppressed by the treatment with 6-cyano-7-nitroquinoxaline-2,3-dione, α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor antagonist, and D-(-)-2-amino-5-phosphonopentanoic acid, an N-Methyl-d-aspartate (NMDA) receptor antagonist. These data suggested that co-cultured hiPSC-derived neurons formed synaptic connections mediated by AMPA and NMDA receptors. We also demonstrated that co-cultured hiPSC-derived neurons showed epileptiform activity upon treatment with gabazine or kaliotoxin. Finally, we performed single-cell transcriptome analysis in hiPSC-derived neurons and found that hiPSC-derived astrocytes activated the pathways involved in the activities of AMPA and NMDA receptor functions, neuronal polarity, and axon guidance in hiPSC-derived neurons. These data suggested that hiPSC-derived astrocytes promoted the development of action potential, synaptic functions, and neuronal networks in hiPSC-derived neurons, and then these functional alterations result in the epileptiform activity in response to convulsant drugs. Our study indicates the possibility that co-culture system of hiPSC-derived neurons with hiPSC-derived astrocytes could be useful in the risk assessment of drug-induced seizure.


Assuntos
Astrócitos/metabolismo , Convulsivantes/toxicidade , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Convulsões/induzido quimicamente , Potenciais de Ação , Comunicação Celular , Linhagem Celular , Linhagem da Célula , Técnicas de Cocultura , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese , Neurônios/metabolismo , Piridazinas/toxicidade , Receptores de AMPA/efeitos dos fármacos , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Medição de Risco , Venenos de Escorpião/toxicidade , Convulsões/metabolismo , Convulsões/fisiopatologia , Análise de Sequência de RNA , Análise de Célula Única/métodos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA