Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bull Environ Contam Toxicol ; 104(3): 321-326, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32034450

RESUMO

Guidelines for developing water quality standards allow U.S. states to exclude toxicity data for the family Salmonidae (trout and salmon) when deriving guidelines for warm-water habitats. This practice reflects the belief that standards based on salmonid data may be overprotective of toxic effects on other fish taxa. In acute tests with six chemicals and eight fish species, the salmonid, Rainbow Trout (Oncorhynchus mykiss), was the most sensitive species tested with copper, zinc, and sulfate, but warm-water species were most sensitive to nickel, chloride, and ammonia. Overall, warm-water fishes, including sculpins (Cottidae) and sturgeons (Acipenseridae), were about as sensitive as salmonids in acute tests and in limited chronic testing with Lake Sturgeon (Acipenser fulvescens) and Mottled Sculpin (Cottus bairdi). In rankings of published acute values, invertebrate taxa were most sensitive for all six chemicals tested and there was no trend for greater sensitivity of salmonids compared to warm-water fish.


Assuntos
Monitoramento Ambiental/métodos , Oncorhynchus mykiss/crescimento & desenvolvimento , Percas/crescimento & desenvolvimento , Poluentes Químicos da Água/toxicidade , Qualidade da Água , Água/química , Animais , Especificidade da Espécie , Temperatura , Testes de Toxicidade Aguda , Testes de Toxicidade Crônica , Poluentes Químicos da Água/análise
2.
Arch Environ Contam Toxicol ; 72(3): 449-460, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28238046

RESUMO

The objectives of the present study were to develop methods for propagating western pearlshell (Margaritifera falcata) for laboratory toxicity testing and evaluate acute and chronic toxicity of chromium VI [Cr(VI)] to the pearlshell and a commonly tested mussel (fatmucket, Lampsilis siliquoidea at 20 °C or in association with a co-stressor of elevated temperature (27 °C), zinc (50 µg Zn/L), or nitrate (35 mg NO3/L). A commonly tested invertebrate (amphipod, Hyalella azteca) also was tested in chronic exposures. Newly transformed pearlshell (~1 week old) were successfully cultured and tested in acute 96 h Cr exposures (control survival 100%). However, the grow-out of juveniles in culture for chronic toxicity testing was less successful and chronic 28-day Cr toxicity tests started with 4 month-old pearlshell failed due to low control survival (39-68%). Acute median effect concentration (EC50) for the pearlshell (919 µg Cr/L) and fatmucket (456 µg Cr/L) tested at 20 °C without a co-stressor decreased by a factor of > 2 at elevated temperature but did not decrease at elevated Zn or elevated NO3. Chronic 28-day Cr tests were completed successfully with the fatmucket and amphipod (control survival 83-98%). Chronic maximum acceptable toxicant concentration (MATC) for fatmucket at 20 °C (26 µg Cr/L) decreased by a factor of 2 at elevated temperature or NO3 but did not decrease at elevated Zn. However, chronic MATC for amphipod at 20 °C (13 µg Cr/L) did not decrease at elevated temperature, Zn, or NO3. Acute EC50s for both mussels tested with or without a co-stressor were above the final acute value used to derive United States Environmental Protection Agency acute water quality criterion (WQC) for Cr(VI); however, chronic MATCs for fatmucket at elevated temperature or NO3 and chronic MATCs for the amphipod at 20 °C with or without elevated Zn or NO3 were about equal to the chronic WQC. The results indicate that (1) the elevated temperature increased the acute Cr toxicity to both mussel species, (2) fatmucket was acutely more sensitive to Cr than the pearlshell, (3) elevated temperature or NO3 increased chronic Cr toxicity to fatmucket, and (4) acute WQC are protective of tested mussels with or without a co-stressor; however, the chronic WQC might not protect fatmucket at elevated temperature or NO3 and might not protect the amphipod at 20 °C with or without elevated Zn or NO3.


Assuntos
Anfípodes/fisiologia , Bivalves/fisiologia , Temperatura Alta , Nitratos/toxicidade , Estresse Fisiológico , Poluentes Químicos da Água/toxicidade , Zinco/toxicidade , Animais , Cromo , Testes de Toxicidade Crônica
3.
Environ Toxicol Chem ; 43(9): 2020-2025, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38887151

RESUMO

Effect concentrations of ammonia, nickel, sodium chloride, and potassium chloride from short-term 7-day tests were compared to those from standard chronic 28-day toxicity tests with juvenile mussels (fatmucket, Lampsilis siliquoidea) to evaluate the sensitivities of the 7-day tests. The effect concentrations for nickel (59 µg Ni/L), chloride (316-519 mg Cl/L, a range from multiple tests), and potassium (15 mg K/L) obtained from the 7-day tests were within a range of effect concentrations for each corresponding chemical in the 28-day tests (41-91 µg Ni/L, 251->676 mg Cl/L, 15-23 mg K/L), whereas the 7-day ammonia effect concentration (0.40 mg/L total ammonia nitrogen; TAN) was up to 3.3-fold greater than the 28-day effect concentrations (0.12-0.36 mg TAN/L) but with overlapped 95% confidence limits. These results indicate that the 7-day tests produced similar estimates compared to the 28-day tests. Further studies are needed to evaluate the 7-day test sensitivity using additional chemicals with different modes of toxic action. Environ Toxicol Chem 2024;43:2020-2025. Published 2024. This article is a U.S. Government work and is in the public domain in the USA.


Assuntos
Amônia , Bivalves , Testes de Toxicidade , Poluentes Químicos da Água , Animais , Bivalves/efeitos dos fármacos , Amônia/toxicidade , Poluentes Químicos da Água/toxicidade , Níquel/toxicidade , Cloreto de Sódio/toxicidade
4.
Environ Toxicol Chem ; 40(9): 2484-2498, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34288068

RESUMO

The potential for delayed mortality following short-term episodic pollution events was evaluated by exposing cladocerans (Ceriodaphnia dubia) and rainbow trout (Oncorhynchus mykiss) to zinc (Zn) in various 1- to 48-h and 1- to 96-h exposures, respectively, followed by transferring the exposed organisms to clean water for up to 47 h for C. dubia and up to 95 h for trout for additional observation. For C. dubia, 1-h exposures of up to 3790 µg Zn/L never resulted in mortality during the actual Zn exposures, but by 48 h, a 1-h exposure to 114 µg/L, a concentration similar to the present US national water quality acute criterion for the test water conditions, ultimately killed 70% of C. dubia. With C. dubia, the speed of action of Zn toxicity was faster for intermediate concentrations than for the highest concentrations tested. For rainbow trout, pronounced delayed mortalities by 96 h only occurred following ≥8-h exposures. For both species, ultimate mortalities from Zn exposures ≤8 h mostly presented as delayed mortalities, whereas for exposures ≥24 h, almost all ultimate mortalities presented during the actual exposure periods. With Zn, risks of delayed mortality following exposures to all concentrations tested were much greater for the more sensitive, small-bodied invertebrate (C. dubia) than for the less sensitive, larger-bodied fish (rainbow trout). These results, along with previous studies, show that delayed mortality is an important consideration in evaluating risks to aquatic organisms from brief, episodic exposures to some substances. Environ Toxicol Chem 2021;40:2484-2498. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC. This article has been contributed to by US Government employees and their work is in the public domain in the USA.


Assuntos
Cladocera , Oncorhynchus mykiss , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Qualidade da Água , Zinco/toxicidade
5.
Environ Toxicol Chem ; 39(5): 1071-1085, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32113188

RESUMO

Elevated nitrate (NO3 ) and sulfate (SO4 ) in surface water are of global concern, and studies are needed to generate toxicity data to develop environmental guideline values for NO3 and SO4 . The present study was designed to fill existing gaps in toxicity databases by determining the acute and/or chronic toxicity of NO3 (tested as NaNO3 ) to a unionid mussel (Lampsilis siliquoidea), a midge (Chironomus dilutus), a fish (rainbow trout, Oncorhynchus mykiss), and 2 amphibians (Hyla versicolor and Lithobates sylvaticus), and to determine the acute and/or chronic toxicity of SO4 (tested as Na2 SO4 ) to 2 unionid mussels (L. siliquoidea and Villosa iris), an amphipod (Hyalella azteca), and 2 fish species (fathead minnow, Pimephales promelas and O. mykiss). Among the different test species, acute NO3 median effect concentrations (EC50s) ranged from 189 to >883 mg NO3 -N/L, and chronic NO3 20% effect concentrations (EC20s) based on the most sensitive endpoint ranged from 9.6 to 47 mg NO3 -N/L. The midge was the most sensitive species, and the trout was the least sensitive species in both acute and chronic NO3 exposures. Acute SO4 EC50s for the 2 mussel species (2071 and 2064 mg SO4 /L) were similar to the EC50 for the amphipod (2689 mg SO4 /L), whereas chronic EC20s for the 2 mussels (438 and 384 mg SO4 /L) were >2-fold lower than the EC20 of the amphipod (1111 mg SO4 /L), indicating the high sensitivity of mussels in chronic SO4 exposures. However, the fathead minnow, with an EC20 of 374 mg SO4 /L, was the most sensitive species in chronic SO4 exposures whereas the rainbow trout was the least sensitive species (EC20 > 3240 mg SO4 /L). The high sensitivity of fathead minnow was consistent with the finding in a previous chronic Na2 SO4 study. However, the EC20 values from the present study conducted in test water containing a higher potassium concentration (3 mg K/L) were >2-fold greater than those in the previous study at a lower potassium concentration (1 mg K/L), which confirmed the influence of potassium on chronic Na2 SO4 toxicity to the minnow. Environ Toxicol Chem 2020;39:1071-1085. © 2020 SETAC.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Água Doce/química , Nitratos/toxicidade , Sulfatos/toxicidade , Testes de Toxicidade Aguda , Testes de Toxicidade Crônica , Poluentes Químicos da Água/toxicidade , Anfípodes/efeitos dos fármacos , Animais , Bivalves/efeitos dos fármacos , Chironomidae/efeitos dos fármacos , Feminino , Oncorhynchus mykiss/fisiologia , Especificidade da Espécie , Unionidae/efeitos dos fármacos , Qualidade da Água
6.
Environ Toxicol Chem ; 38(12): 2682-2687, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31499580

RESUMO

We conducted acute lethality tests with white sturgeon (Acipenser transmontanus) and Ceriodaphnia dubia exposed to copper and zinc at dissolved organic carbon concentrations ranging from 0.5 to 5.5 mg/L. Dissolved organic carbon had minimal effects on zinc toxicity but did have a protective effect on acute copper toxicity, which was equal to that predicted by the copper biotic ligand model (BLM). The BLM-adjusted copper median effect concentrations for A. transmontanus ranged from 2.4 to 8.2 mg/L. Environ Toxicol Chem 2019;38:2682-2687. Published 2019 Wiley Periodicals, Inc. on behalf of SETAC. This article is a US government work, and as such, is in the public domain in the United States of America.


Assuntos
Carbono/metabolismo , Cladocera/efeitos dos fármacos , Cobre/toxicidade , Peixes/metabolismo , Poluentes Químicos da Água/toxicidade , Zinco/toxicidade , Animais , Carbono/análise , Cladocera/crescimento & desenvolvimento , Cladocera/metabolismo , Cobre/análise , Cobre/metabolismo , Peixes/crescimento & desenvolvimento , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Zinco/análise , Zinco/metabolismo
7.
Environ Toxicol Chem ; 27(5): 1141-6, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18419178

RESUMO

The objective of the present study was to evaluate the influence of pH on the toxicity of ammonia to juvenile freshwater mussels. Acute 96-h ammonia toxicity tests were conducted with 10-d-old juvenile mussels (fatmucket, Lampsilis siliquoidea) at five pH levels ranging from 6.5 to 9.0 in flow-through diluter systems at 20 degrees C. Acute 48-h tests with amphipods (Hyalella azteca) and 96-h tests with oligochaetes (Lumbriculus variegatus) were conducted concurrently under the same test conditions to determine the sensitivity of mussels relative to these two commonly tested benthic invertebrate species. During the exposure, pH levels were maintained within 0.1 of a pH unit and ammonia concentrations were relatively constant through time (coefficient of variation for ammonia concentrations ranged from 2 to 30% with a median value of 7.9%). The median effective concentrations (EC50s) of total ammonia nitrogen (N) for mussels were at least two to six times lower than the EC50s for amphipods and oligochaetes, and the EC50s for mussels decreased with increasing pH and ranged from 88 mg N/L at pH 6.6 to 0.96 mg N/L at pH 9.0. The EC50s for mussels were at or below the final acute values used to derive the U.S. Environmental Protection Agency's acute water quality criterion (WQC). However, the quantitative relationship between pH and ammonia toxicity to juvenile mussels was similar to the average relationship for other taxa reported in the WQC. These results indicate that including mussel toxicity data in a revision to the WQC would lower the acute criterion but not change the WQC mathematical representation of the relative effect of pH on ammonia toxicity.


Assuntos
Amônia/toxicidade , Bivalves/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Animais , Feminino , Água Doce
8.
Environ Toxicol Chem ; 37(12): 3041-3049, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29920756

RESUMO

Freshwater mussels (order Unionoida) are one of the most imperiled groups of animals in the world. However, many ambient water quality criteria and other environmental guideline values do not include data for freshwater mussels, in part because mussel toxicity test methods are comparatively new and data may not have been available when criteria and guidelines were derived. The objectives of the present study were to evaluate the acute toxicity of sodium chloride (NaCl) and potassium chloride (KCl) to larvae (glochidia) and/or juveniles of a unionid mussel (fatmucket, Lampsilis siliquoidea) and to determine the potential influences of water hardness (50, 100, 200, and 300 mg/L as CaCO3 ) and other major ions (Ca, K, SO4 , or HCO3 ) on the acute toxicity of NaCl to the mussels. From the KCl test, the 50% effect concentration (EC50) for fatmucket glochidia was 30 mg K/L, similar to or slightly lower than the EC50s for juvenile fatmucket (37-46 mg K/L) tested previously in our laboratory. From the NaCl tests, the EC50s for glochidia increased from 441 to 1597 mg Cl/L and the EC50s for juvenile mussels increased from 911 to 3092 mg Cl/L with increasing water hardness from 50 to 300 mg/L. Increasing K from 0.4 to 1.9 mg/L, SO4 from 13 to 40 mg/L, or HCO3 from 44 to 200 mg/L in the 50 mg/L hardness water did not substantially change the NaCl EC50s for juvenile mussels, whereas increasing Ca from 9.9 to 42 mg/L increased the EC50s by a factor of 2. The overall results indicate that glochidia were equally or more sensitive to NaCl and KCl compared with juvenile mussels and that the increased water hardness ameliorated the acute toxicity of NaCl to glochidia and juveniles. These responses rank fatmucket among the most acutely sensitive freshwater organisms to NaCl and KCl. Environ Toxicol Chem 2018;37:3041-3049. © 2018 SETAC. This article is a US government work and, as such, is in thepublic domain in the United States of America.


Assuntos
Bivalves/efeitos dos fármacos , Exposição Ambiental/análise , Cloreto de Potássio/toxicidade , Cloreto de Sódio/toxicidade , Testes de Toxicidade Aguda , Poluentes Químicos da Água/toxicidade , Animais , Feminino , Íons , Larva/efeitos dos fármacos , Qualidade da Água
9.
Environ Toxicol Chem ; 26(10): 2036-47, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17867873

RESUMO

The objective of the present study was to determine acute toxicity of copper, ammonia, or chlorine to larval (glochidia) and juvenile mussels using the recently published American Society for Testing and Materials (ASTM) Standard guide for conducting laboratory toxicity tests with freshwater mussels. Toxicity tests were conducted with glochidia (24- to 48-h exposures) and juveniles (96-h exposures) of up to 11 mussel species in reconstituted ASTM hard water using copper, ammonia, or chlorine as a toxicant. Copper and ammonia tests also were conducted with five commonly tested species, including cladocerans (Daphnia magna and Ceriodaphnia dubia; 48-h exposures), amphipod (Hyalella azteca; 48-h exposures), rainbow trout (Oncorhynchus mykiss; 96-h exposures), and fathead minnow (Pimephales promelas; 96-h exposures). Median effective concentrations (EC50s) for commonly tested species were >58 microg Cu/L (except 15 microg Cu/L for C. dubia) and >13 mg total ammonia N/L, whereas the EC50s for mussels in most cases were <45 microg Cu/L or <12 mg N/L and were often at or below the final acute values (FAVs) used to derive the U.S. Environmental Protection Agency 1996 acute water quality criterion (WQC) for copper and 1999 acute WQC for ammonia. However, the chlorine EC50s for mussels generally were >40 microg/L and above the FAV in the WQC for chlorine. The results indicate that the early life stages of mussels generally were more sensitive to copper and ammonia than other organisms and that, including mussel toxicity data in a revision to the WQC, would lower the WQC for copper or ammonia. Furthermore, including additional mussel data in 2007 WQC for copper based on biotic ligand model would further lower the WQC.


Assuntos
Amônia/toxicidade , Bivalves/efeitos dos fármacos , Cloro/toxicidade , Cobre/toxicidade , Larva/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Bivalves/crescimento & desenvolvimento , Feminino , Água Doce , Estágios do Ciclo de Vida
10.
Environ Toxicol Chem ; 26(10): 2048-56, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17867874

RESUMO

The objectives of the present study were to develop methods for conducting chronic toxicity tests with juvenile mussels under flow-through conditions and to determine the chronic toxicity of copper and ammonia to juvenile mussels using these methods. In two feeding tests, two-month-old fatmucket (Lampsilis siliquoidea) and rainbow mussel (Villosa iris) were fed various live algae or nonviable algal mixture for 28 d. The algal mixture was the best food resulting in high survival (>or=90%) and growth. Multiple copper and ammonia toxicity tests were conducted for 28 d starting with two-month-old mussels. Six toxicity tests using the algal mixture were successfully completed with a control survival of 88 to 100%. Among copper tests with rainbow mussel, fatmucket, and oyster mussel (Epioblasma capsaeformis), chronic value ([ChV], geometric mean of the no-observed-effect concentration and the lowest-observed-effect concentration) ranged from 8.5 to 9.8 microg Cu/L for survival and from 4.6 to 8.5 microg Cu/L for growth. Among ammonia tests with rainbow mussel, fatmucket, and wavy-rayed lampmussel (L. fasciola), the ChV ranged from 0.37 to 1.2 mg total ammonia N/L for survival and from 0.37 to 0.67 mg N/L for growth. These ChVs were below the U.S. Environmental Protection Agency 1996 chronic water quality criterion (WQC) for copper (15 microg/L; hardness 170 mg/L) and 1999 WQC for total ammonia (1.26 mg N/L; pH 8.2 and 20 degrees C). Results indicate that toxicity tests with two-month-old mussels can be conducted for 28 d with >80% control survival; growth was frequently a more sensitive endpoint compared to survival; and the 1996 chronic WQC for copper and the 1999 chronic WQC for total ammonia might not be adequately protective of the mussel species tested. However, a recently revised 2007 chronic WQC for copper based on the biotic ligand model may be more protective in the water tested.


Assuntos
Amônia/toxicidade , Bivalves/efeitos dos fármacos , Cobre/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Bivalves/crescimento & desenvolvimento , Água Doce , Espectrometria de Massas , Sensibilidade e Especificidade
11.
Environ Toxicol Chem ; 36(3): 786-796, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27699830

RESUMO

Freshwater mussels, one of the most imperiled groups of animals in the world, are generally underrepresented in toxicity databases used for the development of ambient water quality criteria and other environmental guidance values. Acute 96-h toxicity tests were conducted to evaluate the sensitivity of 5 species of juvenile mussels from 2 families and 4 tribes to 10 chemicals (ammonia, metals, major ions, and organic compounds) and to screen 10 additional chemicals (mainly organic compounds) with a commonly tested mussel species, fatmucket (Lampsilis siliquoidea). In the multi-species study, median effect concentrations (EC50s) among the 5 species differed by a factor of ≤2 for chloride, potassium, sulfate, and zinc; a factor of ≤5 for ammonia, chromium, copper, and nickel; and factors of 6 and 12 for metolachlor and alachlor, respectively, indicating that mussels representing different families or tribes had similar sensitivity to most of the tested chemicals, regardless of modes of action. There was a strong linear relationship between EC50s for fatmucket and the other 4 mussel species across the 10 chemicals (r2 = 0.97, slope close to 1.0), indicating that fatmucket was similar to other mussel species; thus, this commonly tested species can be a good surrogate for protecting other mussels in acute exposures. The sensitivity of juvenile fatmucket among different populations or cultured from larvae of wild adults and captive-cultured adults was also similar in acute exposures to copper or chloride, indicating captive-cultured adult mussels can reliably be used to reproduce juveniles for toxicity testing. In compiled databases for all freshwater species, 1 or more mussel species were among the 4 most sensitive species for alachlor, ammonia, chloride, potassium, sulfate, copper, nickel, and zinc; therefore, the development of water quality criteria and other environmental guidance values for these chemicals should reflect the sensitivity of mussels. In contrast, the EC50s of fatmucket tested in the single-species study were in the high percentiles (>75th) of species sensitivity distributions for 6 of 7 organic chemicals, indicating mussels might be relatively insensitive to organic chemicals in acute exposures. Environ Toxicol Chem 2017;36:786-796. Published 2016 Wiley Periodicals, Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.


Assuntos
Água Doce/química , Unionidae/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Feminino , Larva/efeitos dos fármacos , Dose Letal Mediana , Reprodução/efeitos dos fármacos , Especificidade da Espécie , Testes de Toxicidade Aguda , Poluentes Químicos da Água/química , Qualidade da Água
12.
Environ Toxicol Chem ; 29(9): 2053-63, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20821663

RESUMO

Toxicity of lead, cadmium, or zinc to early life stages of freshwater mussels (fatmucket, Lampsilis siliquoidea; Neosho mucket, L. rafinesqueana) was evaluated in 48-h exposures with mussel larvae (glochidia), in 96-h exposures with newly transformed (5-d-old) and two- or six-month-old juvenile mussels, or in 28-d exposures with two- or four-month-old mussels in reconstituted soft water. The 24-h median effect concentrations (EC50s) for fatmucket glochidia (>299 microg Pb/L, >227 microg Cd/L, 2,685 microg Zn/L) and 96-h EC50s for two- or six-month-old fatmucket (>426 microg Pb/L, 199 microg Cd/L, 1,700 microg Zn/L) were much higher than 96-h EC50s for newly transformed fatmucket (142 and 298 microg Pb/L, 16 microg Cd/L, 151 and 175 microg Zn/L) and Neosho mucket (188 microg Pb/L, 20 microg Cd/L, 145 microg Zn/L). Chronic values for fatmucket were 10 microg Pb/L, 6.0 microg Cd/L, and 63 and 68 microg Zn/L. When mussel data from the present study and the literature were included in updated databases for deriving U.S. Environmental Protection Agency water quality criteria, mussel genus mean acute values were in the lower percentiles of the sensitivity distribution of all freshwater species for Pb (the 26th percentile), Cd (the 15th to 29th percentile), or Zn (the 12th to 21st percentile). The mussel (Lampsilis) genus mean chronic value was the lowest value ever reported for Pb (the 9th percentile) but was near the middle of the sensitivity distribution for Cd (the 61st percentile) or Zn (the 44th percentile). These results indicate that mussels were relatively sensitive to the acute toxicity of these three metals and to the chronic toxicity of Pb, but were moderately sensitive to the chronic toxicity of Cd or Zn compared to other freshwater species.


Assuntos
Metais Pesados/toxicidade , Unionidae/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Cádmio/toxicidade , Relação Dose-Resposta a Droga , Feminino , Água Doce/química , Chumbo/toxicidade , Testes de Toxicidade Aguda , Testes de Toxicidade Crônica , Unionidae/crescimento & desenvolvimento , Zinco/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA