Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Periodontal Res ; 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39225294

RESUMO

AIM: Ascorbic acid (AA) is a water-soluble vitamin that has antioxidant properties and regulates homeostasis of connective tissue through controlling various enzymatic activities. Two cell surface glycoproteins, sodium-dependent vitamin C transporter (SVCT) 1 and SVCT2, are known as ascorbate transporters. The purpose of this study was to investigate the expression pattern and functions of SVCTs in periodontal ligament (PDL) and PDL fibroblast (PDLF). METHODS: Gene expression was examined using real-time polymerase chain reaction (PCR) and reverse transcription PCR. SVCT2 expression was determined by immunofluorescence staining, western blot and flow cytometry. ALP activity and collagen production were examined using ALP staining and collagen staining. Short interfering RNA was used to knock down the gene level of SVCT2. Change of comprehensive gene expression under SVCT2 knockdown condition was examined by RNA-sequencing analysis. RESULTS: Real-time PCR, fluorescent immunostaining, western blot and flowy cytometry showed that SVCT2 was expressed in PDLF and PDL. ALP activity, collagen production, and SVCT2 expression were enhanced upon AA stimulation in PDLF. The enhancement of ALP activity, collagen production, and SVCT2 expression by AA was abolished under SVCT2 knockdown condition. RNA-sequencing revealed that gene expression of CLDN4, Cyclin E2, CAMK4, MSH5, DMC1, and Nidgen2 were changed by SVCT2 knockdown. Among them, the expression of MSH5 and DMC1, which are related to DNA damage sensor activity, was enhanced by AA, suggesting the new molecular target of AA in PDLF. CONCLUSION: Our study reveals the SVCT2 expression in PDL and the pivotal role of SVCT2 in mediating AA-induced enhancements of ALP activity and collagen production in PDLF. Additionally, we identify alterations in gene expression profiles, highlighting potential molecular targets influenced by AA through SVCT2. These findings deepen our understanding of periodontal tissue homeostasis mechanisms and suggest promising intervention targeting AA metabolism.

2.
Int J Mol Sci ; 23(3)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35162935

RESUMO

Increasing attention has been paid to cell-based medicines. Many in vivo and in vitro studies have demonstrated the efficacy of stem cell transplantation for the regeneration of periodontal tissues over the past 20 years. Although positive evidence has accumulated regarding periodontal regeneration using stem cells, the exact mechanism of tissue regeneration is still largely unknown. This review outlines the practicality and emerging problems of stem cell transplantation therapy for periodontal regeneration. In addition, possible solutions to these problems and cell-free treatment are discussed.


Assuntos
Doenças Periodontais/terapia , Periodonto/fisiologia , Transplante de Células-Tronco/métodos , Animais , Exossomos/fisiologia , Humanos , Regeneração , Células-Tronco/citologia , Células-Tronco/metabolismo
3.
J Cell Physiol ; 234(11): 20377-20391, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30963561

RESUMO

Periodontitis is characterized by the chronic inflammation and destruction of tooth-supporting tissues. Periodontal ligament stem cell (PDLSC) is the mesenchymal stem cell (MSC) population isolated from periodontal ligament, which is the key tissue for regeneration of periodontal tissues. Although transplantation of PDLSCs is proposed as novel regenerative therapy, limited information is available, regarding the characteristic change of PDLSCs during ex vivo expansion. In this study, we encountered morphological change of PDLSCs during standard cell culture and aimed to investigate the change of PDLSCs in stem cell characteristics and to search for the culture condition to maintain stem cell properties. Characteristics of PDLSCs were examined using in vitro osteoblast and adipocyte differentiation. Myofibroblast differentiation was confirmed using immunohistochemistry and collagen gel contraction assay. Replicative senescence was examined by ß-gal staining. PDLSCs changed their morphology from spindle to flat and wide during ex vivo expansion. After the morphological change, PDLSCs showed several features of myofibroblast including extensive stress fiber formation, contraction activity, and myofibroblast marker expression. Upon the morphological change, osteoblastic and adipocyte differentiation capacity were reduced and expression of stem cell-related genes were decreased. ß-Gal staining was not always correlated with the morphological change of PDLSCs. Moreover, exogenous addition of bFGF and PDGF-BB served to maintain spindle shape and osteoblastic differentiation potential of PDLSCs. This study demonstrates that spontaneous differentiation of PDLSCs during ex vivo expansion and may provide the important information of cell culture condition of PDLSCs for clinical use.


Assuntos
Diferenciação Celular/fisiologia , Miofibroblastos/citologia , Ligamento Periodontal/citologia , Células-Tronco/citologia , Adolescente , Adulto , Proliferação de Células/fisiologia , Células Cultivadas , Feminino , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , Osteoblastos/citologia , Osteoblastos/metabolismo , Regeneração/fisiologia , Transplante de Células-Tronco/métodos , Adulto Jovem
4.
J Periodontal Res ; 54(4): 364-373, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30597545

RESUMO

OBJECTIVES: The periodontal ligament (PDL) has important roles in maintaining homeostasis, wound healing, and regeneration of periodontal tissues by supplying stem/progenitor cells. Periodontal ligament stem cells (PDLSCs) have mesenchymal stem cell (MSC)-like characteristics and can be isolated from periodontal tissues. The aim of this study was to examine the effect of three-dimensional spheroid culture on the characteristics of PDLSCs. MATERIAL AND METHODS: Periodontal ligament stem cells were isolated and cultured from healthy teeth, and PDLSC spheroids were formed by pellet culture in polypropylene tubes. The proliferation of PDLSCs in spheroids and conventional two-dimensional (2D) cultures were examined by immunostaining for Ki67. Cell death and cell size were analyzed using flow cytometry. Gene expression changes were investigated by quantitative real time PCR. RESULTS: Periodontal ligament stem cells spontaneously formed spheroid masses in pellet culture. The size of PDLSC spheroids was inversely proportional to the culture period. Fewer Ki67-positive cells were detected in PDLSC spheroids compared to those in 2D culture. Flow cytometry revealed an increase in dead cells and a decrease in cell size in PDLSC spheroids. The expression levels of genes related to anti-inflammation (TSG6, COX2, MnSOD) and angiogenesis (VEGF, bFGF, HGF) were drastically increased by spheroid culture compared to 2D culture. TSG6 gene expression was inhibited in PDLSC spheroids in the presence of the apoptosis signal inhibitor, Z-VAD-FMK. Additionally, PDLSC spheroid transplantation into rat periodontal defects did not induce the regeneration of periodontal tissues. CONCLUSIONS: We found that spheroid culture of PDLSCs affected several characteristics of PDLSCs, including the expression of genes related to anti-inflammation and angiogenesis; apoptosis signaling may be involved in these changes. Our results revealed the characteristics of PDLSCs in spheroid culture and have provided new information to the field of stem cell research.


Assuntos
Células-Tronco Mesenquimais/citologia , Ligamento Periodontal/citologia , Adolescente , Adulto , Animais , Apoptose , Diferenciação Celular , Proliferação de Células , Tamanho Celular , Células Cultivadas , Criança , Expressão Gênica , Humanos , Masculino , Transplante de Células-Tronco Mesenquimais , Periodonto/patologia , Ratos , Ratos Nus , Regeneração , Adulto Jovem
5.
Int J Mol Sci ; 20(1)2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30621073

RESUMO

Periodontal disease is chronic inflammation that leads to the destruction of tooth-supporting periodontal tissues. We devised a novel method ("cell transfer technology") to transfer cells onto a scaffold surface and reported the potential of the technique for regenerative medicine. The aim of this study is to examine the efficacy of this technique in periodontal regeneration and the fate of transplanted cells. Human periodontal ligament stem cells (PDLSCs) were transferred to decellularized amniotic membrane and transplanted into periodontal defects in rats. Regeneration of tissues was examined by microcomputed tomography and histological observation. The fate of transplanted PDLSCs was traced using PKH26 and human Alu sequence detection by PCR. Imaging showed more bone in PDLSC-transplanted defects than those in control (amnion only). Histological examination confirmed the enhanced periodontal tissue formation in PDLSC defects. New formation of cementum, periodontal ligament, and bone were prominently observed in PDLSC defects. PKH26-labeled PDLSCs were found at limited areas in regenerated periodontal tissues. Human Alu sequence detection revealed that the level of Alu sequence was not increased, but rather decreased. This study describes a novel stem cell transplantation strategy for periodontal disease using the cell transfer technology and offers new insight for cell-based periodontal regeneration.


Assuntos
Ligamento Periodontal/cirurgia , Ligamento Periodontal/transplante , Transplante de Células-Tronco , Células-Tronco/citologia , Adolescente , Adulto , Âmnio/citologia , Animais , Humanos , Ligamento Periodontal/diagnóstico por imagem , Ligamento Periodontal/patologia , Ratos , Regeneração , Microtomografia por Raio-X , Adulto Jovem
6.
J Cell Biochem ; 117(7): 1658-70, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26640165

RESUMO

Mesenchymal stem cell (MSC)-conditioned medium (MSC-CM) has been reported to enhance wound healing. Exosomes contain nucleic acids, proteins, and lipids, and function as an intercellular communication vehicle for mediating some paracrine effects. However, the function of MSC-derived exosomes (MSC-exo) remains elusive. In this study, we isolated human placenta MSC (PlaMSC)-derived exosomes (PlaMSC-exo) and examined their function in vitro. PlaMSCs were isolated from human term placenta using enzymatic digestion. PlaMSC-exo were prepared from the conditioned medium of PlaMSC (PlaMSC-CM) by ultracentrifugation. The expression of stemness-related genes, such as OCT4 and NANOG, in normal adult human dermal fibroblasts (NHDF) after incubation with PlaMSC-exo was measured by real-time reverse transcriptase PCR analysis (real-time PCR). The effect of PlaMSC-exo on OCT4 transcription activity was assessed using Oct4-EGFP reporter mice-derived dermal fibroblasts. The stimulating effects of PlaMSC-exo on osteoblastic and adipocyte-differentiation of NHDF were evaluated by alkaline phosphatase (ALP), and Alizarin red S- and oil red O-staining, respectively. The expression of osteoblast- and adipocyte-related genes was also assessed by real-time PCR. The treatment of NHDF with PlaMSC-exo significantly upregulated OCT4 and NANOG mRNA expression. PlaMSC-exo also enhanced OCT4 transcription. The NHDF treated with PlaMSC-exo exhibited osteoblastic and adipocyte-differentiation in osteogenic and adipogenic induction media. PlaMSC-exo increase the expression of OCT4 and NANOG mRNA in fibroblasts. As a result, PlaMSC-exo influence the differentiation competence of fibroblasts to both osteoblastic and adipocyte-differentiation. It shows a new feature of MSCs and the possibility of clinical application of MSC-exo. J. Cell. Biochem. 117: 1658-1670, 2016. © 2015 Wiley Periodicals, Inc.


Assuntos
Exossomos/metabolismo , Fibroblastos/metabolismo , Regulação da Expressão Gênica/fisiologia , Células-Tronco Mesenquimais/metabolismo , Proteína Homeobox Nanog/biossíntese , Fator 3 de Transcrição de Octâmero/sangue , Placenta/metabolismo , Feminino , Humanos , Células-Tronco Mesenquimais/citologia , Placenta/citologia , Gravidez
7.
Lasers Med Sci ; 30(2): 875-83, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24241972

RESUMO

The erbium-doped yttrium aluminum garnet (Er:YAG) laser is currently used for periodontal soft tissue management with favorable outcomes. However, the process of wound healing after Er:YAG laser (ErL) treatment has not been fully elucidated yet. The aim of this study was to investigate the gingival tissue healing after ErL ablation in comparison with that after electrosurgery (ElS). Gingival defects were created in 28 rats by ablation with ErL irradiation or ElS. The chronological changes in wound healing were evaluated using histological, histometrical, and immunohistochemical analyses. The ErL-ablated gingival tissue revealed much less thermal damage, compared to the ElS. In the ElS sites, the postoperative tissue destruction continued due to thermal damage, while in the ErL sites, tissue degradation was limited and the defects were re-epithelialized early. Heat shock protein (Hsp) 72/73 expression was detected abundantly remote from the wound in the ElS, whereas it was slightly observed in close proximity to the wound in the ErL sites. Hsp47 expression was observed in the entire connective tissue early in the wound healing and was found limited in the wound area later. This phenomenon proceeded faster in the ErL sites than in the ElS sites. Expression of proliferating cell nuclear antigen (PCNA) persisted in the epithelial tissue for a longer period in the ElS than that in the ErL. The ErL results in faster and more favorable gingival wound healing compared to the ElS, suggesting that the ErL is a safe and suitable tool for periodontal soft tissue management.


Assuntos
Eletrocirurgia , Gengiva/patologia , Gengiva/cirurgia , Terapia a Laser , Lasers de Estado Sólido , Cicatrização/efeitos da radiação , Alumínio , Animais , Cimentos Dentários/efeitos da radiação , Esmalte Dentário/patologia , Esmalte Dentário/efeitos da radiação , Gengiva/efeitos da radiação , Imuno-Histoquímica , Masculino , Ratos Sprague-Dawley , Reepitelização/efeitos da radiação , Ítrio
8.
Clin Calcium ; 24(4): 565-73, 2014 Apr.
Artigo em Japonês | MEDLINE | ID: mdl-24681503

RESUMO

Mesenchymal stem cells (MSCs) have multi-differentiation potency, and enhance wound healing in various kinds of disease. Recently MSC not only differentiate into tissue-forming cells, but also secrete various kinds of cytokines and chemokines that are anti-apoptotic, immunomodulatory, angiogenic, and the cell-mobilizing to influence extracellular environment. In addition, we show that MSC has a novel intercellular communication mechanism. It hopes to suggest ways to make safer and reliable usage of MSC in bone regeneration.


Assuntos
Regeneração Óssea/fisiologia , Diferenciação Celular/fisiologia , Células-Tronco Mesenquimais/citologia , Cicatrização/fisiologia , Animais , Comunicação Celular , Terapia Baseada em Transplante de Células e Tecidos/métodos , Humanos , Células-Tronco Mesenquimais/metabolismo
9.
Dent Mater J ; 43(1): 20-27, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38008439

RESUMO

Mesenchymal stem cells (MSCs) and induced pluripotent stem (iPS) cells have great potential as cell sources for tissue engineering and regenerative medicine. This study aimed to investigate whether iPS cells can be differentiated into MSCs using MSCGM, a commercially available MSC culture system. The cells were characterized by flow cytometry, immunostaining, and gene expression analyses. We also examined their potential to differentiate into osteoblasts and chondrocytes. Our results showed that iPS cells cultured in MSCGM (iPS-MSCGM) exhibited a fibroblast-like morphology and expressed CD73 and CD90 genes, as well as positive markers for CD73, CD90, and CD105. Moreover, iPS-MSCGM cells demonstrated the ability to differentiate into osteoblasts and chondrocytes in vitro. This study demonstrates a new and simple method for inducing the differentiation of iPS cells to MSCs using MSCGM.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Mesenquimais , Células-Tronco Pluripotentes Induzidas/metabolismo , Diferenciação Celular , Citometria de Fluxo , Fibroblastos , Células Cultivadas
10.
J Appl Oral Sci ; 31: e20220427, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37042872

RESUMO

OBJECTIVE: To investigate the angiogenesis in human umbilical vein endothelial cells (HUVEC) under high glucose concentration, treated with exosomes derived from stem cells from human exfoliated deciduous teeth (SHED). METHODOLOGY: SHED-derived exosomes were isolated by differential centrifugation and were characterized by nanoparticle tracking analysis, transmission electron microscopy, and flow cytometric assays. We conducted in vitro experiments to examine the angiogenesis in HUVEC under high glucose concentration. Cell Counting Kit-8, migration assay, tube formation assay, quantitative real-time PCR, and immunostaining were performed to study the role of SHED-derived exosomes in cell proliferation, migration, and angiogenic activities. RESULTS: The characterization confirmed SHED-derived exosomes: size ranged from 60-150 nm with a mode of 134 nm, cup-shaped morphology, and stained positively for CD9, CD63, and CD81. SHED-exosome significantly enhanced the proliferation and migration of high glucose-treated HUVEC. A significant reduction was observed in tube formation and a weak CD31 staining compared to the untreated-hyperglycemic-induced group. Interestingly, exosome treatment improved tube formation qualitatively and demonstrated a significant increase in tube formation in the covered area, total branching points, total tube length, and total loop parameters. Moreover, SHED-exosome upregulates angiogenesis-related factors, including the GATA2 gene and CD31 protein. CONCLUSIONS: Our data suggest that the use of SHED-derived exosomes potentially increases angiogenesis in HUVEC under hyperglycemic conditions, which includes increased cell proliferation, migration, tubular structures formation, GATA2 gene, and CD31 protein expression. SHED-exosome usage may provide a new treatment strategy for periodontal patients with diabetes mellitus.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Humanos , Células Endoteliais da Veia Umbilical Humana , Exossomos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco , Proliferação de Células , Dente Decíduo , Glucose/farmacologia , Glucose/metabolismo
11.
J Cell Physiol ; 227(2): 649-57, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21465469

RESUMO

Cementum is a calcified tissue covering the tooth root surface, which functions as rigid tooth-anchoring structure. Periodontal ligament is a unique non-mineralized connective tissue, and is a source of mineralized tissue forming cells such as cementoblasts and osteoblasts. The CEMP1 is a novel cementum component the presence of which appears to be limited to cementoblasts and their progenitors. In order to understand the function of CEMP1, we investigated CEMP1 expression during the differentiation of human periodontal ligament cells. Immunomagnetically enriched alkaline phosphatase (ALP)-positive periodontal ligament cells preferentially expressed CEMP1. CEMP1 expression was reduced when periodontal ligament cells differentiated to osteoblasts in vitro. Over-expression of CEMP1 in periodontal ligament cells enhanced cementoblast differentiation and attenuated periodontal and osteoblastic phenotypes. Our data demonstrate for the first time that the CEMP1 is not only a marker protein for cementoblast-related cells, but it also regulates cementoblast commitment in periodontal ligament cells.


Assuntos
Cemento Dentário/citologia , Osteoblastos/citologia , Ligamento Periodontal/citologia , Proteínas/metabolismo , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Biomarcadores , Diferenciação Celular/fisiologia , Células Cultivadas , Cemento Dentário/metabolismo , Regulação da Expressão Gênica/fisiologia , Inativação Gênica , Humanos , Imuno-Histoquímica , Sialoproteína de Ligação à Integrina/genética , Sialoproteína de Ligação à Integrina/metabolismo , Osteoblastos/metabolismo , Osteocalcina/genética , Osteocalcina/metabolismo , Proteínas/genética
12.
Cells Tissues Organs ; 195(6): 535-49, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-21912076

RESUMO

Tooth enamel is formed in a typical biomineralization process under the guidance of specific organic components. Amelotin (AMTN) is a recently identified, secreted protein that is transcribed predominantly during the maturation stage of enamel formation, but its protein expression profile throughout amelogenesis has not been described in detail. The main objective of this study was to define the spatiotemporal expression profile of AMTN during tooth development in comparison with other known enamel proteins. A peptide antibody against AMTN was raised in rabbits, affinity purified and used for immunohistochemical analyses on sagittal and transverse paraffin sections of decalcified mouse hemimandibles. The localization of AMTN was compared to that of known enamel proteins amelogenin, ameloblastin, enamelin, odontogenic ameloblast-associated/amyloid in Pindborg tumors and kallikrein 4. Three-dimensional images of AMTN localization in molars at selected ages were reconstructed from serial stained sections, and transmission electron microscopy was used for ultrastructural localization of AMTN. AMTN was detected in ameloblasts of molars in a transient fashion, declining at the time of tooth eruption. Prominent expression in maturation stage ameloblasts of the continuously erupting incisor persisted into adulthood. In contrast, amelogenin, ameloblastin and enamelin were predominantly found during the early secretory stage, while odontogenic ameloblast-associated/amyloid in Pindborg tumors and kallikrein 4 expression in maturation stage ameloblasts paralleled that of AMTN. Secreted AMTN was detected at the interface between ameloblasts and the mineralized enamel. Recombinant AMTN protein did not mediate cell attachment in vitro. These results suggest a primary role for AMTN in the late stages of enamel mineralization.


Assuntos
Amelogênese , Proteínas do Esmalte Dentário/metabolismo , Animais , Bioensaio , Western Blotting , Adesão Celular , Proteínas do Esmalte Dentário/ultraestrutura , Perfilação da Expressão Gênica , Humanos , Imageamento Tridimensional , Soros Imunes/imunologia , Imuno-Histoquímica , Incisivo/citologia , Incisivo/metabolismo , Incisivo/ultraestrutura , Mandíbula/citologia , Mandíbula/metabolismo , Maxila/citologia , Camundongos , Camundongos Endogâmicos C57BL , Dente Molar/citologia , Dente Molar/metabolismo , Transporte Proteico , Fatores de Tempo
13.
Dent J (Basel) ; 9(1)2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33467531

RESUMO

Periodontal disease is a chronic inflammation of tooth-supporting tissues, and the destruction of these tissues results in tooth loss. Regeneration of periodontal tissues is the ultimate goal of periodontal treatment. We previously reported that transplantation of conditioned medium (CM) of periodontal ligament stem cells (PDLSCs) demonstrated the enhancement of periodontal tissue regeneration, compared to CM from fibroblasts (Fibroblast-CM). We hypothesized that the angiogenic effects of PDLSC-CM might participate in the enhanced wound healing of periodontal tissues. The aim of this study was to investigate the effect of PDLSC-CM on the functions of endothelial cells. PDLSCs were cultured from periodontal ligament tissues obtained from healthy volunteers. Human gingival epithelial cells, dermal fibroblasts, osteoblasts, and umbilical vein endothelial cells (HUVECs) were purchased from commercial sources. The functions of endothelial cells were examined using immunostaining of Ki67, observation of nuclear fragmentation and condensation (apoptosis), and network formation on Matrigel. Vascular endothelial cell growth factor (VEGF) level was measured using an ELISA kit. HUVECs demonstrated higher cell viability in PDLSC-CM when compared with those in Fibroblast-CM. HUVECs demonstrated a higher number of Ki67-positive cells and lower apoptosis cells in PDLSC-CM, compared to Fibroblast-CM. Additionally, HUVECs formed more capillary-like structures in PDLSC-CM than Fibroblast-CM. PDLSC-CM contained higher levels of angiogenic growth factor, VEGF, than Fibroblast-CM. Our results showed that PDLSC-CM increased cell viability, proliferation, and capillary formation of HUVECs compared to Fibroblast-CM, suggesting the angiogenic effects of PDLSC-CM, and the effect is a potential regenerative mechanism of periodontal tissues by PDLSC-CM.

14.
Lasers Med Sci ; 25(4): 559-69, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20186556

RESUMO

Although the use of high-level Er:YAG laser irradiation has been increasing in periodontal and peri-implant therapy, the effects of low-level Er:YAG laser on surrounding tissues and cells remain unclear. In the present study, the effects of low-level Er:YAG laser irradiation on osteoblast proliferation were investigated. Cells of the osteoblastic cell line MC3T3-E1 were treated with low-level Er:YAG laser irradiation with various combinations of laser settings (fluence 0.7-17.2 J/cm(2)) and in the absence or presence of culture medium during irradiation. On day 1 and/or day 3, cell proliferation and death were determined by cell counting and by measurement of lactate dehydrogenase (LDH) levels. Further, the role of mitogen-activated protein kinase (MAPK) pathways in laser-enhanced cell proliferation was investigated by inhibiting the MAPK pathways and then measuring MAPK phosphorylation by Western blotting. Higher proliferation rates were found with various combinations of irradiation parameters on days 1 and 3. Significantly higher proliferation was also observed in laser-irradiated MC3T3-E1 cells at a fluence of approximately 1.0-15.1 J/cm(2), whereas no increase in LDH activity was observed. Further, low-level Er:YAG irradiation induced the phosphorylation of extracellular signal-regulated protein kinase (MAPK/ERK) 5 to 30 min after irradiation. Although MAPK/ERK 1/2 inhibitor U0126 significantly inhibited laser-enhanced cell proliferation, activation of stress-activated protein kinases/Jun N-terminal kinase (SAPK/JNK) and p38 MAPK was not clearly detected. These results suggest that low-level Er:YAG laser irradiation increases osteoblast proliferation mainly by activation of MAPK/ERK, suggesting that the Er:YAG laser may be able to promote bone healing following periodontal and peri-implant therapy.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Lasers de Estado Sólido , Terapia com Luz de Baixa Intensidade , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Osteoblastos/efeitos da radiação , Animais , Western Blotting , Morte Celular/efeitos da radiação , Linhagem Celular , Proliferação de Células/efeitos da radiação , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , L-Lactato Desidrogenase/metabolismo , Camundongos , Osteoblastos/citologia , Fosforilação , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
15.
Heliyon ; 5(6): e01991, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31338459

RESUMO

Periodontal disease involves the chronic inflammation of tooth supporting periodontal tissues. As the disease progresses, it manifests destruction of periodontal tissues and eventual tooth loss. The regeneration of lost periodontal tissue has been one of the most important subjects in periodontal research. Since their discovery, periodontal ligament stem cells (PDLSCs), have been transplanted into periodontal bony defects to examine their regenerative potential. Periodontal defects were successfully regenerated using PDLSC sheets, which were fabricated by cell sheet engineering in animal models, and for which clinical human trials are underway. To expand the utility of PDLSC sheet, we attempted to construct periodontal tissues around titanium implants with the goal of facilitating the prevention of peri-implantitis. In so doing, we found newly formed cementum-periodontal ligament (PDL) structures on the implant surface. In this mini review, we summarize the literature regarding cell-based periodontal regeneration using PDLSCs, as well as previous trials aimed at forming periodontal tissues around dental implants. Moreover, the recent findings in cementogenesis are reviewed from the perspective of the formation of further stable periodontal attachment structure on dental implant. This mini review aims to summarize the current status of the creation of novel periodontal tissue-bearing dental implants, and to consider its future direction.

16.
PLoS One ; 13(8): e0201855, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30092096

RESUMO

Delayed gingival wound healing is widely observed in periodontal patients with diabetes. However, the molecular mechanisms of the impaired function of gingival fibroblasts in diabetes remain unclear. The purpose of this study was to investigate changes in the properties of human gingival fibroblasts (HGFs) under high-glucose conditions. Primary HGFs were isolated from healthy gingiva and cultured with 5.5, 25, 50, and 75 mM glucose for 72 h. In vitro wound healing, 5-ethynyl-2'-deoxyuridine (EdU), and water-soluble tetrazolium salt (WST-8) assays were performed to examine cell migration and proliferation. Lactase dehydrogenase (LDH) levels were measured to determine cytotoxicity. The mRNA expression levels of oxidative stress markers were quantified by real-time PCR. Intracellular reactive oxygen species (ROS) were also measured in live cells. The antioxidant N-acetyl-l-cysteine (NAC, 1 mM) was added to evaluate the involvement of ROS in the glucose effect on HGFs. As a result, the in vitro wound healing assay showed that high glucose levels significantly reduced fibroblast migration and proliferation at 6, 12, 24, 36, and 48 h. The numbers of cells positive for EdU staining were decreased, as was cell viability, at 50 and 75 mM glucose. A significant increase in LDH was proportional to the glucose concentration. The mRNA levels of heme oxygenase-1 and superoxide dismutase-1 and ROS levels were significantly increased in HGFs after 72 h of exposure to 50 mM glucose concentration. The addition of NAC diminished the inhibitory effect of high glucose in the in vitro wound healing assay. The results of the present study show that high glucose impairs the proliferation and migration of HGFs. Fibroblast dysfunction may therefore be caused by high glucose-induced oxidative stress and may explain the delayed gingival wound healing in diabetic patients.


Assuntos
Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Fibroblastos/metabolismo , Gengiva/metabolismo , Glucose/efeitos adversos , Estresse Oxidativo/fisiologia , Acetilcisteína/farmacologia , Adulto , Idoso , Antioxidantes/farmacologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Gengiva/efeitos dos fármacos , Gengiva/lesões , Gengiva/patologia , Glucose/metabolismo , Heme Oxigenase-1/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Estresse Oxidativo/efeitos dos fármacos , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase-1/metabolismo , Cicatrização/efeitos dos fármacos , Cicatrização/fisiologia
17.
J. appl. oral sci ; 31: e20220427, 2023. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1430628

RESUMO

Abstract Objective To investigate the angiogenesis in human umbilical vein endothelial cells (HUVEC) under high glucose concentration, treated with exosomes derived from stem cells from human exfoliated deciduous teeth (SHED). Methodology SHED-derived exosomes were isolated by differential centrifugation and were characterized by nanoparticle tracking analysis, transmission electron microscopy, and flow cytometric assays. We conducted in vitro experiments to examine the angiogenesis in HUVEC under high glucose concentration. Cell Counting Kit-8, migration assay, tube formation assay, quantitative real-time PCR, and immunostaining were performed to study the role of SHED-derived exosomes in cell proliferation, migration, and angiogenic activities. Results The characterization confirmed SHED-derived exosomes: size ranged from 60-150 nm with a mode of 134 nm, cup-shaped morphology, and stained positively for CD9, CD63, and CD81. SHED-exosome significantly enhanced the proliferation and migration of high glucose-treated HUVEC. A significant reduction was observed in tube formation and a weak CD31 staining compared to the untreated-hyperglycemic-induced group. Interestingly, exosome treatment improved tube formation qualitatively and demonstrated a significant increase in tube formation in the covered area, total branching points, total tube length, and total loop parameters. Moreover, SHED-exosome upregulates angiogenesis-related factors, including the GATA2 gene and CD31 protein. Conclusions Our data suggest that the use of SHED-derived exosomes potentially increases angiogenesis in HUVEC under hyperglycemic conditions, which includes increased cell proliferation, migration, tubular structures formation, GATA2 gene, and CD31 protein expression. SHED-exosome usage may provide a new treatment strategy for periodontal patients with diabetes mellitus.

18.
J Biophotonics ; 11(3)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29045028

RESUMO

We investigated the biological effects of Er:YAG laser (2940-nm; DELight, HOYA ConBio, Fremont, California) irradiation at fluences of 3.6, 4.2, 4.9, 6.3, 8.1 or 9.7 J cm-2 at 20 or 30 Hz for 20 or 30 seconds on primary human gingival fibroblasts (HGFs). Irradiation at 6.3 J cm-2 promoted maximal cell proliferation, determined by WST-8 assay and crystal violet staining, but was accompanied by lactate dehydrogenase release, on day 3 post-irradiation. Elevation of ATP level, Ki67 staining, and cyclin-A2 mRNA expression confirmed that Er:YAG affected the cell cycle and increased the number of proliferating cells. Transmission electron microscopy showed alterations of mitochondria and ribosomal endoplasmic reticulum (ER) at 3 hours post-irradiation at 6.3 J cm-2 , and the changes subsided after 24 hours, suggesting transient cellular injury. Microarray analysis revealed up-regulation of 21 genes involved in heat-related biological responses and ER-associated degradation. The mRNA expression of heat shock protein 70 family was increased, as validated by Real-time PCR. Surface temperature measurement confirmed that 6.3 J cm-2 generated heat (40.9°C post-irradiation). Treatment with 40°C-warmed medium increased proliferation. Laser-induced proliferation was suppressed by inhibition of thermosensory transient receptor potential channels. Thus, despite causing transient cellular damage, Er:YAG laser irradiation at 6.3 J cm-2 strongly potentiated HGF proliferation via photo-thermal stress, suggesting potential wound-healing benefit.


Assuntos
Fibroblastos/citologia , Fibroblastos/efeitos da radiação , Gengiva/citologia , Lasers de Estado Sólido , Adulto , Idoso , Ciclo Celular/efeitos da radiação , Proliferação de Células/efeitos da radiação , Ciclina A2/genética , Feminino , Fibroblastos/metabolismo , Regulação da Expressão Gênica/efeitos da radiação , Humanos , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Temperatura
19.
J Periodontol ; 78(2): 328-34, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17274723

RESUMO

BACKGROUND: Periodontal ligament (PDL) cells possess osteoblast-like properties and play key roles in periodontal regeneration. Previously, we have reported that ascorbic acid promotes the osteoblastic differentiation of PDL cells by modulating the type I collagen-integrin interaction. However, the signaling pathway activated following collagen-integrin interaction is still unclear. In this study, we examined the involvement of extracellular signal-regulated kinase (ERK)1/2 in the expression of osteoblastic marker genes such as the osteoblast-specific transcriptional factor runt-related transcription factor 2 (Runx2), alkaline phosphatase (ALP), and osteocalcin (OCN) in PDL cells. METHODS: PDL cells were cultured on a conventional or type I collagen-coated dish in the presence or absence of ascorbic acid and examined for ALP activity and osteoblastic marker genes. For detection of ERK1/2, cells were plated on a petri (non-adhesive) dish or type I collagen-coated dish, and Western blot analysis was performed. The effect of the ERK1/2 inhibitor on osteoblastic marker gene expression was examined. RESULTS: Ascorbic acid increased gene expression of Runx2, ALP, and OCN. A combination of ascorbic acid and type I collagen remarkably upregulated Runx2, ALP, and OCN gene expression and ALP activity. Western blot analysis revealed an increased level of ERK1/2 phosphorylation in cells plated on type I collagen. An ERK1/2 inhibitor suppressed ascorbic acid-induced ALP and OCN gene expression, whereas Runx2 was not affected in PDL cells. CONCLUSION: These results indicate that ERK1/2 is involved in ascorbic acid-induced osteoblastic differentiation during PDL cell attachment to type I collagen.


Assuntos
Sistema de Sinalização das MAP Quinases , Proteína Quinase 1 Ativada por Mitógeno/fisiologia , Osteoblastos/citologia , Ligamento Periodontal/citologia , Adulto , Fosfatase Alcalina/biossíntese , Fosfatase Alcalina/genética , Ácido Ascórbico/farmacologia , Western Blotting , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Colágeno Tipo I/fisiologia , Subunidade alfa 1 de Fator de Ligação ao Core/biossíntese , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Feminino , Flavonoides/farmacologia , Humanos , Integrinas/fisiologia , Masculino , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Osteocalcina/biossíntese , Osteocalcina/genética , Ligamento Periodontal/enzimologia , Reação em Cadeia da Polimerase , Regulação para Cima
20.
PLoS One ; 12(12): e0189601, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29267310

RESUMO

The aim of this study is to investigate the mechanisms linking high glucose to gingival wound healing. Bilateral wounds were created in the palatal gingiva adjacent to maxillary molars of control rats and rats with streptozotocin-induced diabetes. After evaluating postsurgical wound closure by digital imaging, the maxillae including wounds were resected for histological examinations. mRNA expressions of angiogenesis, inflammation, and oxidative stress markers in the surgical sites were quantified by real-time polymerase chain reaction. Primary fibroblast culture from the gingiva of both rats was performed in high glucose and normal medium. In vitro wound healing and cell proliferation assays were performed. Oxidative stress marker mRNA expressions and reactive oxygen species production were measured. Insulin resistance was evaluated via PI3K/Akt and MAPK/Erk signaling following insulin stimulation using Western blotting. To clarify oxidative stress involvement in high glucose culture and cells of diabetic rats, cells underwent N-acetyl-L-cysteine treatment; subsequent Akt activity was measured. Wound healing in diabetic rats was significantly delayed compared with that in control rats. Nox1, Nox2, Nox4, p-47, and tumor necrosis factor-α mRNA levels were significantly higher at baseline in diabetic rats than in control rats. In vitro study showed that cell proliferation and migration significantly decreased in diabetic and high glucose culture groups compared with control groups. Nox1, Nox2, Nox4, and p47 expressions and reactive oxygen species production were significantly higher in diabetic and high glucose culture groups than in control groups. Akt phosphorylation decreased in the high glucose groups compared with the control groups. Erk1/2 phosphorylation increased in the high glucose groups, with or without insulin treatment, compared with the control groups. Impaired Akt phosphorylation partially normalized after antioxidant N-acetyl-L-cysteine treatment. Thus, delayed gingival wound healing in diabetic rats occurred because of impaired fibroblast proliferation and migration. Fibroblast dysfunction may occur owing to high glucose-induced insulin resistance via oxidative stress.


Assuntos
Diabetes Mellitus Experimental/patologia , Gengiva/patologia , Estresse Oxidativo , Cicatrização , Acetilcisteína/farmacologia , Animais , Antioxidantes/farmacologia , Biomarcadores/metabolismo , Movimento Celular , Proliferação de Células , Células Cultivadas , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Expressão Gênica , Gengiva/efeitos dos fármacos , Insulina/metabolismo , Masculino , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Cicatrização/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA