Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(17)2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39275003

RESUMO

Recently, much research has focused on the search for new mixed donor-acceptor layers for applications in organic electronics. Organic heterostructures with layers based on the generation 1 poly(propylene thiophenoimine) (G1PPT) dendrimer, N,N'-diisopropylnaphthalene diimide (MNDI), and a combination of the two were prepared and their electrical properties were investigated. Single layers of G1PPT and MNDI and a mixed layer (G1PPT:MNDI) were obtained via spin coating on quartz glass, silicon, and glass/ITO substrates, using chloroform as a solvent. The absorption mechanism was investigated, the degree of disorder was estimated, and the emission properties of the layers were highlighted using spectroscopic methods (UV-Vis transmission and photoluminescence). The effects of the concentration and surface topographical particularities on the properties of the layers were analyzed via atomic force microscopy. All of the heterostructures realized with ITO and Au electrodes showed good conduction, with currents of the order of mA. Additionally, the heterostructure with a mixed layer exhibited asymmetry in the current-voltage curve between forward and reverse polarization in the lower range of the applied voltages, which was more significant at increased concentrations and could be correlated with rectifier diode behavior. Consequently, the mixed-layer generation 1 poly(propylene thiophenoimine) dendrimer with N,N'-diisopropylnaphthalene diimide can be considered promising for electronic applications.

2.
Molecules ; 29(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38893300

RESUMO

All-inorganic metal halide perovskite is promising for highly efficient and thermally stable perovskite light-emitting diodes (PeLEDs). However, there is still great room for improvement in the film quality, including low coverage and high trap density, which play a vital role in achieving high-efficiency PeLEDs. In this work, lead acetate (Pb(Ac)2) was introduced into the perovskite precursor solution as an additive. Experimental results show that perovskite films deposited from a one-step anti-solvent free solution process with increased surface coverage and reduced trap density were obtained, leading to enhanced photoluminescence (PL) intensity. More than that, the valence band maximum (VBM) of perovskite films was reduced, bringing about a better energy level matching the work function of the hole-injection layer (HIL) poly (3,4-ethylenedioxythiophene)-poly (styrene sulfonate) (PEDOT: PSS), which is facilitated for the hole injection, leading to a decrease in the turn-on voltage (Vth) of PeLEDs from 3.4 V for the control device to 2.6 V. Finally, the external quantum efficiency (EQE) of the sky blue PeLEDs (at 484 nm) increased from 0.09% to 0.66%. The principles of Pb(Ac)2 were thoroughly investigated by using X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). This work provides a simple and effective strategy for improving the morphology of perovskite and therefore the performance of PeLEDs.

3.
Int J Mol Sci ; 24(12)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37373514

RESUMO

Salinity is one of the major detrimental abiotic stresses at the forefront of deterring crop productivity globally. Although the exogenous application of phytohormones has formerly proven efficacious to plants, their effect on the moderately stress-tolerant crop "Sorghum bicolor" remains elusive. To investigate this, S. bicolor seeds primed with methyl jasmonate (0; 10 and 15 µM MeJa) were exposed to salt (200 mM NaCl) stress, and their morpho-physiological, biochemical, and molecular attributes were measured. Salt stress significantly decreased shoot length and fresh weight by 50%, whereas dry weight and chlorophyll content were decreased by more than 40%. Furthermore, salt-stress-induced oxidative damage was evident by the formation of brown formazan spots (indicative of H2O2 production) on sorghum leaves and a more than 30% increase in MDA content. However, priming with MeJa improved growth, increased chlorophyll content, and prevented oxidative damage under salt stress. While 15 µM MeJa maintained proline content to the same level as the salt-stressed samples, total soluble sugars were maintained under 10 µM MeJa, indicating a high degree of osmotic adjustment. Shriveling and thinning of the epidermis and xylem tissues due to salt stress was prevented by MeJa, followed by a more than 70% decrease in the Na+/K+ ratio. MeJa also reversed the FTIR spectral shifts observed for salt-stressed plants. Furthermore, salt stress induced the expression of the jasmonic acid biosynthesis genes; linoleate 92-lipoxygenase 3, allene oxide synthase 1, allene oxide cyclase, and 12-oxophytodienoate reductase 1. In MeJa-primed plants, their expression was reduced, except for the 12-oxophytodienoate reductase 1 transcript, which further increased by 67%. These findings suggest that MeJa conferred salt-stress tolerance to S. bicolor through osmoregulation and synthesis of JA-related metabolites.


Assuntos
Sorghum , Sorghum/genética , Sorghum/metabolismo , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo , Sementes , Clorofila/metabolismo
4.
Molecules ; 28(24)2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38138513

RESUMO

The rampant spread and death rate of the recent coronavirus pandemic related to the SARS-CoV-2 respiratory virus have underscored the critical need for affordable, portable virus diagnostics, particularly in resource-limited settings. Moreover, efficient and timely monitoring of vaccine efficacy is needed to prevent future widespread infections. Electrochemical immunosensing poses an effective alternative to conventional molecular spectroscopic approaches, offering rapid, cost-effective, sensitive, and portable electroanalysis of disease biomarkers and antibodies; however, efforts to improve binding efficiency and sensitivity are still being investigated. Graphene quantum dots (GQDs) in particular have shown promise in improving device sensitivity. This study reports the development of a GQD-functionalized point-of-contamination device leveraging the selective interactions between SARS-CoV-2-specific Spike (S) Protein receptor binding domain (RBD) antigens and IgG anti-SARS-CoV-2-specific S-protein antibodies at screen-printed carbon electrode (SPCE) surfaces. The immunocomplexes formed at the GQD surfaces result in the interruption of the redox reactions that take place in the presence of a redox probe, decreasing the current response. Increased active surface area, conductivity, and binding via EDC/NHS chemistry were achieved due to the nanomaterial inclusion, with 5 nm, blue luminescent GQDs offering the best results. GQD concentration, EDC/NHS ratio, and RBD S-protein incubation time and concentration were optimized for the biosensor, and inter- and intra-screen-printed carbon electrode detection was investigated by calibration studies on multiple and single electrodes. The single electrode used for the entire calibration provided the best results. The label-free immunosensor was able to selectively detect anti-SARS-CoV-2 IgG antibodies between 0.5 and 100 ng/mL in the presence of IgM and other coronavirus antibodies with an excellent regression of 0.9599. A LOD of 2.028 ng/mL was found, offering comparable findings to the literature-reported values. The detection sensitivity of the sensor is further compared to non-specific IgM antibodies. The developed GQD immunosensor was compared to other low-oxygen content carbon nanomaterials, namely (i) carbon quantum dot (CQD), (ii) electrochemically reduced graphene oxide, and (iii) carbon black-functionalized devices. The findings suggest that improved electron transfer kinetics and increased active surface area of the CNs, along with surface oxygen content, aid in the detection of anti-SARS-CoV-2 IgG antibodies. The novel immunosensor suggests a possible application toward monitoring of IgG antibody production in SARS-CoV-2-vaccinated patients to study immune responses, vaccine efficacy, and lifetime to meet the demands for POC analysis in resource-limited settings.


Assuntos
Técnicas Biossensoriais , COVID-19 , Humanos , Carbono , COVID-19/diagnóstico , Imunoensaio , SARS-CoV-2 , Anticorpos Monoclonais Humanizados , Imunoglobulina G , Imunoglobulina M , Oxigênio
5.
Molecules ; 28(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38138588

RESUMO

Tuberculosis (TB) is a worldwide burden whose total control and eradication remains a challenge due to factors including false positive/negative diagnoses associated with the poor sensitivity of the current diagnostics in immune-compromised and post-vaccinated individuals. As these factors complicate both diagnosis and treatment, the early diagnosis of TB is of pivotal importance towards reaching the universal vision of a TB-free world. Here, an aptasensor for signaling an interferon gamma (IFN-γ) TB biomarker at low levels is reported. The aptasensor was assembled through gold-thiol interactions between poly(3,4-propylenedioxythiophene), gold nanoparticles, and a thiol-modified DNA aptamer specific to IFN-γ. The aptasensor sensitively detected IFN-γ in spiked pleural fluid samples with a detection limit of 0.09 pg/mL within a linear range from 0.2 pg/mL to 1.2 pg/mL. The good performance of the reported aptasensor indicates that it holds the potential for application in the early diagnosis of, in addition to TB, various diseases associated with IFN-γ release in clinical samples.


Assuntos
Nanopartículas Metálicas , Mycobacterium tuberculosis , Tuberculose , Humanos , Ouro , Tuberculose/diagnóstico , Interferon gama , Biomarcadores , Compostos de Sulfidrila
6.
Analyst ; 147(21): 4829-4837, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36125255

RESUMO

This study is a first-time report of the development of a mercaptosuccinic acid-nickel selenide quantum dots (MSA-NiSe2 QDs)-based electrochemical aptasensor for brain natriuretic peptide (BNP) detection. Herein, novel MSA-NiSe2 QDs were synthesized by microwave irradiation. Microscopic and structural analysis revealed that the QDs are spherical with an average diameter of 2 nm. In the presence of the as-prepared QDs, an amine-modified DNA aptamer sequence was attached to a disposable sensing interface through 1-ethyl-3-(3-dimenthylaminopropyl) carbodiimide/N-hydroxysuccinimide coupling chemistries. Electroanalytical analysis revealed that the developed QDs-based electrochemical aptasensor is highly selective towards BNP and successfully detected BNP in both physiological buffer and human plasma samples with detection limits of 5.45 pg mL-1 and 31.95 pg mL-1, respectively. Moreover, the results revealed a 3-fold enhancement in the loading capacity of the BNP aptamer in the presence of MSA-NiSe2 QDs. By taking advantage of the physical and electronic properties of the novel QDs these materials can be easily adapted to other diagnostic approaches.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Pontos Quânticos , Humanos , Pontos Quânticos/química , Aptâmeros de Nucleotídeos/química , Peptídeo Natriurético Encefálico , Níquel , Carbodi-Imidas , Aminas , Técnicas Biossensoriais/métodos
7.
Anal Bioanal Chem ; 414(2): 907-921, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34665279

RESUMO

Tuberculosis (TB) is one of the main infectious diseases worldwide and accounts for many deaths. It is caused by Mycobacterium tuberculosis usually affecting the lungs of patients. Early diagnosis and treatment are essential to control the TB epidemic. Interferon-gamma (IFN-γ) is a cytokine that plays a part in the body's immune response when fighting infection. Current conventional antibody-based TB sensing techniques which are commonly used include enzyme-linked immunosorbent assay (ELISA) and interferon-gamma release assays (IGRAs). However, these methods have major drawbacks, such as being time-consuming, low sensitivity, and inability to distinguish between the different stages of the TB disease. Several electrochemical biosensor systems have been reported for the detection of interferon-gamma with high sensitivity and selectivity. Microfluidic techniques coupled with multiplex analysis in regular format and as lab-on-chip platforms have also been reported for the detection of IFN-γ. This article is a review of the techniques for detection of interferon-gamma as a TB disease biomarker. The objective is to provide a concise assessment of the available IFN-γ detection techniques (including conventional assays, biosensors, microfluidics, and multiplex analysis) and their ability to distinguish the different stages of the TB disease.


Assuntos
Interferon gama/metabolismo , Tuberculose/diagnóstico , Tuberculose/metabolismo , Biomarcadores/metabolismo , Diagnóstico Precoce , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
8.
Ecotoxicol Environ Saf ; 232: 113249, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35104779

RESUMO

Purification and detection of algal toxins is the most effective technique to ensure that people have clean and safe drinking water. To achieve these objectives, various state-of-the-art technologies were designed and fabricated to decontaminate and detect algal toxins in aquatic environments. Amongst these technologies, aptamer-functionalized hybrid nanomaterials conjugates have received significant consideration as a result of their several benefits over other methods, such as good controllable selectivity, low immunogenicity, and biocompatibility. Because of their excellent properties, aptamer-functionalized hybrid nanomaterials conjugates are one of several remarkable agents. Several isolated aptamer sequences for algal toxins are addressed in this review, as well as aptasensor and decontamination aptamer functionalized metal nanoparticle-derived hybrid nanocomposites applications. In addition, we present diverse aptamer-functionalized hybrid nanomaterial conjugates designs and their applications for sensing and decontamination.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanoestruturas , Descontaminação , Humanos , Nanoestruturas/toxicidade
9.
Sensors (Basel) ; 22(15)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35957341

RESUMO

A simple, highly sensitive, accurate, and low-cost electrochemical sensor was developed for the determination of over-the-counter painkiller, paracetamol (PC). The enhanced sensing capabilities of the developed sensor were fabricated by the single-step modification of disposable pencil graphite electrodes (PGEs) with the simultaneous electrochemical reduction in graphene oxide and antimony (II) salts. For this purpose, an electrochemically reduced graphene oxide-antimony nanoparticle (ERGO-SbNP) nanocomposite material was prepared by trapping metallic nanoparticles between individual graphene sheets in the modification of PGEs. Structural characterization by FTIR and Raman spectroscopy was employed to confirm the presence of oxygen functional groups and defects in the conjugated carbon-based structure of GO. Morphological differences between the modified PGEs were confirmed by HRTEM and HRSEM for the presence of nanoparticles. The modified electrodes were further electrochemically characterized using CV and EIS. The electrooxidation of PC on an ERGO-SbNPs-PGE was achieved by adsorptive stripping differential pulse voltametric analysis in 0.1 mol·L-1 phosphate buffer solution at pH = 7.0. The optimum current response was used to record a detection limit of 0.057 µmol·L-1 for PC. The electrochemical sensor was further used in real sample analysis for a commercially available pharmaceutical tablet (500 mg PC), for which the percentage recovery was between 99.4% and 100.8%.


Assuntos
Grafite , Nanocompostos , Acetaminofen , Antimônio , Técnicas Eletroquímicas/métodos , Eletrodos , Grafite/química , Nanocompostos/química
10.
Molecules ; 25(18)2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32927596

RESUMO

The prevalence of diabetes mellitus (DM), considered one of the most common metabolic disorders, has dramatically increased and resulted in higher rates of morbidity and mortality around the world in the past decade. It is well known that insulin resistance in target tissues and a deficiency in insulin secretion from pancreatic ß-cells are the main characteristics of type 2 diabetes. The aim of this study was the bio-evaluation of compounds isolated from three selected plant species: namely, Salvia africana-lutea, Leonotis ocymifolia, and Plectranthus madagascariensis, for their glucose-uptake ability. Methanolic extracts were produced from the aerial parts of each plant. Compounds were identified using different spectroscopic techniques. The glucose-uptake ability of each compound was then evaluated in mammalian cells using 2-deoxyglucose-6-phosphate. The cytotoxicity of each compound was established via the MTT assay. Chromatographic purification of the three plant species yielded sixteen pure terpenoids. Compounds 1 (p = 0.0031), 8 (p = 0.0053), and 6 (p = 0.0086) showed a marked increase in glucose uptake, respectively. Additionally, 1, 4, and 6 exhibited cytotoxicity toward mammalian tissue with a decrease in cell viability of ~70%, ~68%, and ~67%, respectively. The results suggested that several compounds demonstrated a marked increase in glucose uptake, while two of the compounds exhibited signs of cytotoxicity. It may, therefore, be suggested that these compounds be considered as potential candidates for novel plant-derived alternative therapies in the treatment of type 2 diabetes.


Assuntos
Diterpenos/isolamento & purificação , Diterpenos/farmacologia , Glucose/metabolismo , Lamiaceae/química , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Triterpenos/isolamento & purificação , Triterpenos/farmacologia , Metabolismo dos Carboidratos/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Diterpenos/química , Humanos , Estrutura Molecular , Extratos Vegetais/química , Triterpenos/química
11.
Sensors (Basel) ; 19(5)2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30823479

RESUMO

South Africa is a country with a wide variety of plants that may contain excellent anti-tyrosinase inhibitors. With wide applications in cosmetics, pharmaceuticals and food products, tyrosinase inhibitors have received very special attention in the recent past as a way of preventing the overproduction of melanin in epidermal layers which often over time brings detrimental effects on human skin. In this present study, a fast screening method using a cyclic voltammetry technique was applied in the evaluation of methanolic extracts of twenty-five species of plants from the Lamiaceae family for anti-tyrosinase activity. Among these plants, those that showed a fast current inhibition rate at a minimum concentration when compared to a kojic acid standard were classified as having the greatest anti-tyrosinase activity. These include Salvia chamelaeagnea, S. dolomitica, Plectranthus ecklonii, P. namaensis, and P. zuluensis. The results presented herein focused in particular on providng firsthand information for further extensive research and exploration of natural product materials with anti-tyrosinase activity from South African flora for use in cosmetics, skin care and medicinal treatments.


Assuntos
Lamiaceae/química , Lamiaceae/metabolismo , Monofenol Mono-Oxigenase/química , Monofenol Mono-Oxigenase/metabolismo , Extratos Vegetais/metabolismo , Produtos Biológicos/química , Produtos Biológicos/metabolismo , África do Sul
12.
Anal Chem ; 89(21): 11614-11619, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-28980466

RESUMO

Thin films of a composite of nafion and carbon microparticles have been deposited on nonconducting substrates and their conductivity as well as their ability to generate electrochemiluminescence investigated. The films exhibit very low conductivity (<6 × 103 S m-1) for low particle loadings, but once the percolation threshold is reached (volume percentage of 71 ± 8% carbon particles), the conductivity increases dramatically and a maximum conductivity of 2.0 ± 0.1 × 107 S m-1 is achieved. The electrochemical properties of the composites, including heterogeneous electron transfer rates, were probed using cyclic voltammetry. Significantly, bipolar, or wireless, electrochemiluminescence can be generated with films that contain >65% (by volume) carbon particles using [Ru(bpy)3]2+ as the luminophore and tripropylamine as the coreactant, at an electric field of 14 V cm-1. Under these conditions, the complete film is sufficiently conducting to become polarized in the external electric field and the electrochemiluminescence intensity correlates strongly with the film conductivity. These results demonstrate the usefulness of particle arrays for the wireless generation of electrochemiluminescence at relatively low electric field strengths.

13.
Sensors (Basel) ; 17(8)2017 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-28757588

RESUMO

The adsorptive stripping voltammetric detection of nickel and cobalt in water samples at metal film electrodes has been extensively studied. In this work, a novel, environmentally friendly, metal-free electrochemical probe was constructed for the ultra-trace determination of Ni2+ in water samples by Adsorptive Cathodic Stripping Voltammetry (AdCSV). The electrochemical platform is based on the adsorptive accumulation of Ni2+ ions directly onto a glassy carbon electrode (GCE) modified with dimethylglyoxime (DMG) as chelating agent and a Nafion-graphene (NGr) nanocomposite to enhance electrode sensitivity. The nafion-graphene dimethylglyoxime modified glassy carbon electrode (NGr-DMG-GCE) shows superior detection capabilities as a result of the improved surface-area-to-volume ratio and enhanced electron transfer kinetics following the incorporation of single layer graphene, while limiting the toxic effects of the sensor by removal of the more common mercury, bismuth and lead films. Furthermore, for the first time the NGr-DMG-GCE, in the presence of common interfering metal ions of Co2+ and Zn2+ demonstrates good selectivity and preferential binding towards the detection of Ni2+ in water samples. Structural and morphological characterisation of the synthesised single layer graphene sheets was conducted by Raman spectrometry, HRTEM and HRSEM analysis. The instrumental parameters associated with the electrochemical response, including accumulation potential and accumulation time were investigated and optimised in addition to the influence of DMG and graphene concentrations. The NGr-DMG-GCE demonstrated well resolved, reproducible peaks, with RSD (%) below 5% and a detection limit of 1.5 µg L-1 for Ni2+ reduction at an accumulation time of 120 s., the prepared electrochemical sensor exhibited good detection and quantitation towards Ni2+ detection in tap water samples, well below 0.1 mg L-1 set by the WHO and EPA standards. This comparable to the South African drinking water guidelines of 0.15 mg L-1.

14.
Sensors (Basel) ; 16(11)2016 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-27845719

RESUMO

A sensitive and reagentless electrochemical aptatoxisensor was developed on cobalt (II) salicylaldiimine metallodendrimer (SDD-Co(II)) doped with electro-synthesized silver nanoparticles (AgNPs) for microcystin-LR (L, l-leucine; R, l-arginine), or MC-LR, detection in the nanomolar range. The GCE|SDD-Co(II)|AgNPs aptatoxisensor was fabricated with 5' thiolated aptamer through self-assembly on the modified surface of the glassy carbon electrode (GCE) and the electronic response was measured using cyclic voltammetry (CV). Specific binding of MC-LR with the aptamer on GCE|SDD-Co(II)|AgNPs aptatoxisensor caused the formation of a complex that resulted in steric hindrance and electrostatic repulsion culminating in variation of the corresponding peak current of the electrochemical probe. The aptatoxisensor showed a linear response for MC-LR between 0.1 and 1.1 µg·L-1 and the calculated limit of detection (LOD) was 0.04 µg·L-1. In the detection of MC-LR in water samples, the aptatoxisensor proved to be highly sensitive and stable, performed well in the presence of interfering analog and was comparable to the conventional analytical techniques. The results demonstrate that the constructed MC-LR aptatoxisensor is a suitable device for routine quantification of MC-LR in freshwater and environmental samples.


Assuntos
Nanopartículas Metálicas/química , Nanocompostos/química , Prata/química , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Polipropilenos/química
15.
Water Sci Technol ; 73(5): 983-92, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26942518

RESUMO

Heavy metal ions such as Cd(2+), Pb(2+), Cu(2+), Mg(2+), and Hg(2+) from industrial waste water constitute a major cause of pollution for ground water sources. These ions are toxic to man and aquatic life as well, and should be removed from wastewater before disposal. Various treatment technologies have been reported to remediate the potential toxic elements from aqueous media, such as adsorption, precipitation and coagulation. Most of these technologies are associated with some shortcomings, and challenges in terms of applicability, effectiveness and cost. However, adsorption techniques have the capability of effectively removing heavy metals at very low concentration (1-100 mg/L). Various adsorbents have been reported in the literature for this purpose, including, to a lesser extent, the use of hydrogel adsorbents for heavy metal removal in aqueous phase. Here, we provide an in-depth perspective on the design, application and efficiency of hydrogel systems as adsorbents.


Assuntos
Recuperação e Remediação Ambiental , Hidrogéis , Metais Pesados/química , Poluentes Químicos da Água/química , Adsorção , Águas Residuárias
16.
Artigo em Inglês | MEDLINE | ID: mdl-27715654

RESUMO

This study offers a brief review of the latest developments and applications of electrochemical sensors for the detection of Platinum Group Metals (PGMs) using electrochemical sensors. In particular, significant advances in electrochemical sensors made over the past decade and sensing methodologies associated with the introduction of nanostructures are highlighted. Amongst a variety of detection methods that have been developed for PGMs, nanoparticles offer the unrivaled merits of high sensitivity. Rapid detection of PGMs is a key step to promote improvement of the public health and individual quality of life. Conventional methods to detect PGMs rely on time-consuming and labor intensive procedures such as extraction, isolation, enrichment, counting, etc., prior to measurement. This results in laborious sample preparation and testing over several days. This study reviewed the state-of-the-art application of nanoparticles (NPs) in electrochemical analysis of environmental pollutants. This review is intended to provide environmental scientists and engineers an overview of current rapid detection methods, a close look at the nanoparticles based electrodes and identification of knowledge gaps and future research needs. We summarize electrodes that have been used in the past for detection of PGMs. We describe several examples of applications in environmental electrochemical sensors and performance in terms of sensitivity and selectivity for all the sensors utilized for PGMs detection. NPs have promising potential to increase competitiveness of electrochemical sensors in environmental monitoring, though this review has focused mainly on sensors used in the past decade for PGMs detection. This review therefore provides a synthesis of outstanding performances in recent advances in the nanosensor application for PGMs determination.


Assuntos
Técnicas Eletroquímicas , Monitoramento Ambiental/métodos , Poluentes Ambientais/análise , Metais Pesados/análise , Nanoestruturas/química
17.
Artigo em Inglês | MEDLINE | ID: mdl-27065049

RESUMO

A sensor for the adsorptive stripping voltammetric determination of rare earth elements has been developed. The electrochemical procedure is based on the oxidation of the rare earth elements complexed with alizarin complexone at a glassy carbon electrode that was in situ modified with an antimony film, during an anodic scan from -0.2 V to 1.1 V (vs. Ag/AgCl) and deposition potential of -0.1 V (vs. Ag/AgCl). The factors influencing the adsorptive stripping capability were optimised, including the complexing agent concentration, plating concentration of antimony and deposition time. The detection of rare earth elements (La, Ce and Pr) were realised in 0.08 M sodium acetate (pH = 5.8) solution as supporting electrolyte, with 2 × 10(-6) M alizarin complexone and 1.0 mg L(-1) antimony solution. Under the optimised conditions, a deposition time of 360 s was obtained and a linear response was observed between 1 and 25 µg L(-1). The reproducibility of the voltammetric measurements was found to be within 5.0% RSD for 12 replicate measurements of cerium(III) concentration of 5 µg L(-1) using the same electrode surface. The detection limits obtained using stripping analysis was 0.06, 0.42 and 0.71 µg L(-1) for Ce(III), La(III) and Pr(III), respectively. The developed sensor has been successfully applied for the determination of cerium, lanthanum and praseodymium in municipal tap water samples.


Assuntos
Antimônio , Eletrodos , Monitoramento Ambiental/métodos , Metais Terras Raras/análise , Poluentes Químicos da Água/análise , Abastecimento de Água , Adsorção , Técnicas Eletroquímicas , Humanos , Reprodutibilidade dos Testes
18.
BMC Complement Altern Med ; 15: 224, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26169589

RESUMO

BACKGROUND: Recently, we reported that the crude fractions and pure triterpenes; ursolic acid (C1), 27-E and 27-Z p-coumaric esters of ursolic acid (C2, C3), together with a new triterpene 2,3-seco-taraxer-14-en-2,3-lactone [pycanocarpine (C4)] and its hydrolysed derivative - (2,3-seco-taraxen-4-hydroxy-14-en-2-oic acid) [pycanocarpene (C5)] from Pleiocarpa pycnantha leaves inhibit cell proliferation. However, there has not been any specific report on the use of Pleiocarpa pycnantha leaves and its constituents to kill colorectal adenocarcinoma cancer CaCo-2 cells. We performed in vitro study to evaluate the cytotoxic properties of the ethanolic extract of P. pycnantha P, compounds C2 and C3. A preliminary study of the potential mechanisms were also undertaken. METHODS: Cell viability was measured by WST-1 assay. The Apoptosis level was evaluated by staining with APOPercentage(™) dye and the induction of caspases 3/7 and 9 using Caspase-Glo(®) assays. RESULTS: The exposure of an ethanolic extract from the leaves of P. pycnantha (0.1-1000 µg/ml) and the isolated compounds C2 and C3 (6,25-100 µg/ml) to human colorectal cancer cells reduced the cell viability with an IC50 > 100, 40.9, 36.3 µg/ml for P, C2 and C3 respectively, after 24 h of incubation. The APOPercentage(TM) assay also showed a considerable increase in the percentage of apoptotic cells after 24 h; (25-38% for P, 5-23% for C2 and 6-47 % for C3). Caspase 3 was also activated which is a hallmark of apoptosis. CONCLUSION: These findings suggest that the P. pycnantha and the isolated compounds induce cell apoptosis in human colorectal adenocarcinoma cells. A further study with other cell lines is also recommended.


Assuntos
Apocynaceae/química , Apoptose/efeitos dos fármacos , Extratos Vegetais , Folhas de Planta/química , Triterpenos , Células CACO-2 , Humanos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Triterpenos/química , Triterpenos/farmacologia
19.
Sensors (Basel) ; 15(9): 22343-63, 2015 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-26404296

RESUMO

A novel dendritic star-copolymer, generation 3 poly(propylene thiophenoimine) (G3PPT)-co-poly(3-hexylthiophene) (P3HT) star co-polymer on gold electrode (i.e., Au|G3PPT-co-P3HT) was used as a sensor system for the determination of phenanthrene (PHE). The G3PPT-co-P3HT star co-polymer was synthesized via in situ electrochemical co-polymerization of generation 3 poly (propylene thiophenoimine) and poly (3-hexylthiophene) on gold electrode. 1HNMR spectroscopy was used to determine the regioregularity of the polymer composites, whereas Fourier transform infrared spectroscopy and scanning electron microscopy were used to study their structural and morphological properties. Au|G3PPT-co-P3HT in the absence of PHE, exhibited reversible electrochemistry attributable to the oligo (thiophene) 'pendants' of the dendrimer. PHE produced an increase in the voltammetric signals (anodic currents) due to its oxidation on the dendritic material to produce catalytic current, thereby suggesting the suitability of the Au|G3PPT-co-P3HT electrode as a PHE sensor. The electrocatalysis of PHE was made possible by the rigid and planar oligo-P3HT species (formed upon the oxidation of the oligo (thiophene) pendants of the star-copolymer), which allowed the efficient capture (binding) and detection (electrocatalytic oxidation) of PHE molecules.

20.
Sensors (Basel) ; 15(9): 22547-60, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26370994

RESUMO

The work being reported is the first electrochemical sensor for tetrodotoxin (TTX). It was developed on a glassy carbon electrodes (C) that was modified with poly(4-styrenesolfonic acid)-doped polyaniline film (PANI/PSSA). An amine-end functionalized TTX-binding aptamer, 5'-NH2-AAAAATTTCACACGGGTGCCTCGGCTGTCC-3' (NH2-Apt), was grafted via covalent glutaraldehyde (glu) cross-linking. The resulting aptasensor (C//PANI⁺/PSSA-glu-NH2-Apt) was interrogated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) in sodium acetate buffer (NaOAc, pH 4.8) before and after 30 min incubation in standard TTX solutions. Both CV and EIS results confirmed that the binding of the analyte to the immobilized aptamer modulated the electrochemical properties of the sensor: particularly the charge transfer resistance (Rct) of the PANI⁺/PSSA film, which served as a signal reporter. Based on the Rct calibration curve of the TTX aptasensor, the values of the dynamic linear range (DLR), sensitivity and limit of detection (LOD) of the sensor were determined to be 0.23-1.07 ng·mL(-1) TTX, 134.88 ± 11.42 Ω·ng·mL(-1) and 0.199 ng·mL(-1), respectively. Further studies are being planned to improve the DLR as well as to evaluate selectivity and matrix effects in real samples.


Assuntos
Compostos de Anilina/química , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Ácidos Nucleicos Imobilizados/química , Polímeros/química , Ácidos Sulfônicos/química , Tetrodotoxina/análise , Animais , Limite de Detecção , Tetraodontiformes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA