Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35217610

RESUMO

Pyridox(am)ine 5 ' -phosphate oxidase (PNPO) catalyzes the rate-limiting step in the synthesis of pyridoxal 5 ' -phosphate (PLP), the active form of vitamin B6 required for the synthesis of neurotransmitters gamma-aminobutyric acid (GABA) and the monoamines. Pathogenic variants in PNPO have been increasingly identified in patients with neonatal epileptic encephalopathy and early-onset epilepsy. These patients often exhibit different types of seizures and variable comorbidities. Recently, the PNPO gene has also been implicated in epilepsy in adults. It is unclear how these phenotypic variations are linked to specific PNPO alleles and to what degree diet can modify their expression. Using CRISPR-Cas9, we generated four knock-in Drosophila alleles, hWT , hR116Q , hD33V , and hR95H , in which the endogenous Drosophila PNPO was replaced by wild-type human PNPO complementary DNA (cDNA) and three epilepsy-associated variants. We found that these knock-in flies exhibited a wide range of phenotypes, including developmental impairments, abnormal locomotor activities, spontaneous seizures, and shortened life span. These phenotypes are allele dependent, varying with the known biochemical severity of these mutations and our characterized molecular defects. We also showed that diet treatments further diversified the phenotypes among alleles, and PLP supplementation at larval and adult stages prevented developmental impairments and seizures in adult flies, respectively. Furthermore, we found that hR95H had a significant dominant-negative effect, rendering heterozygous flies susceptible to seizures and premature death. Together, these results provide biological bases for the various phenotypes resulting from multifunction of PNPO, specific molecular and/or genetic properties of each PNPO variant, and differential allele-diet interactions.


Assuntos
Alelos , Dieta , Epilepsia/genética , Fenótipo , Piridoxaminafosfato Oxidase/genética , Vitamina B 6/metabolismo , Sequência de Aminoácidos , Animais , Drosophila melanogaster , Humanos , Piridoxaminafosfato Oxidase/química , Homologia de Sequência de Aminoácidos
2.
Hum Mol Genet ; 28(18): 3126-3136, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31261385

RESUMO

Pyridox (am) ine 5'-phosphate oxidase (PNPO) is a rate-limiting enzyme in converting dietary vitamin B6 (VB6) to pyridoxal 5'-phosphate (PLP), the biologically active form of VB6 and involved in the synthesis of neurotransmitters including γ-aminobutyric acid (GABA), dopamine, and serotonin. In humans, PNPO mutations have been increasingly identified in neonatal epileptic encephalopathy and more recently also in early-onset epilepsy. Till now, little is known about the neurobiological mechanisms underlying PNPO-deficiency-induced seizures due to the lack of animal models. Previously, we identified a c.95 C>A missense mutation in sugarlethal (sgll)-the Drosophila homolog of human PNPO (hPNPO)-and found mutant (sgll95) flies exhibiting a lethal phenotype on a diet devoid of VB6. Here, we report the establishment of both sgll95 and ubiquitous sgll knockdown (KD) flies as valid animal models of PNPO-deficiency-induced epilepsy. Both sgll95 and sgll KD flies exhibit spontaneous seizures before they die. Electrophysiological recordings reveal that seizures caused by PNPO deficiency have characteristics similar to that in flies treated with the GABA antagonist picrotoxin. Both seizures and lethality are associated with low PLP levels and can be rescued by ubiquitous expression of wild-type sgll or hPNPO, suggesting the functional conservation of the PNPO enzyme between humans and flies. Results from cell type-specific sgll KD further demonstrate that PNPO in the brain is necessary for seizure prevention and survival. Our establishment of the first animal model of PNPO deficiency will lead to better understanding of VB6 biology, the PNPO gene and its mutations discovered in patients, and can be a cost-effective system to test therapeutic strategies.


Assuntos
Encefalopatias Metabólicas/diagnóstico , Encefalopatias Metabólicas/genética , Hipóxia-Isquemia Encefálica/diagnóstico , Hipóxia-Isquemia Encefálica/genética , Mutação , Fenótipo , Piridoxaminafosfato Oxidase/deficiência , Convulsões/diagnóstico , Convulsões/genética , Ração Animal , Animais , Comportamento Animal , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Encefalopatias Metabólicas/metabolismo , Modelos Animais de Doenças , Drosophila melanogaster , Epilepsia , Técnicas de Silenciamento de Genes , Genes Letais , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Hipóxia-Isquemia Encefálica/metabolismo , Redes e Vias Metabólicas , Piridoxaminafosfato Oxidase/genética , Piridoxaminafosfato Oxidase/metabolismo , Interferência de RNA , Convulsões/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA