Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Oncol ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459421

RESUMO

Acute myeloid leukaemia (AML) is a clonal haematological malignancy affecting the myeloid lineage, with generally poor patient outcomes owing to the lack of targeted therapies. The histone lysine demethylase 4A (KDM4A) has been established as a novel therapeutic target in AML, due to its selective oncogenic role within leukaemic cells. We identify that the transcription factor nuclear factor of activated T cells 2 (NFATC2) is a novel binding and transcriptional target of KDM4A in the human AML THP-1 cell line. Furthermore, cytogenetically diverse AML cell lines, including THP-1, were dependent on NFATC2 for colony formation in vitro, highlighting a putative novel mechanism of AML oncogenesis. Our study demonstrates that NFATC2 maintenance of cell cycle progression in human AML cells was driven primarily by CCND1. Through RNA sequencing (RNA-seq) and chromatin immunoprecipitation sequencing (ChIP-seq), NFATc2 was shown to bind to the promoter region of genes involved in oxidative phosphorylation and subsequently regulate their gene expression in THP-1 cells. Furthermore, our data show that NFATC2 shares transcriptional targets with the transcription factor c-MYC, with MYC knockdown phenocopying NFATC2 knockdown. These data suggest a newly identified co-ordinated role for NFATC2 and MYC in the maintenance of THP-1 cell function, indicative of a potential means of therapeutic targeting in human AML.

2.
Nat Commun ; 15(1): 651, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38246924

RESUMO

Whilst it is recognised that targeting self-renewal is an effective way to functionally impair the quiescent leukaemic stem cells (LSC) that persist as residual disease in chronic myeloid leukaemia (CML), developing therapeutic strategies to achieve this have proved challenging. We demonstrate that the regulatory programmes of quiescent LSC in chronic phase CML are similar to that of embryonic stem cells, pointing to a role for wild type p53 in LSC self-renewal. In support of this, increasing p53 activity in primitive CML cells using an MDM2 inhibitor in combination with a tyrosine kinase inhibitor resulted in reduced CFC outputs and engraftment potential, followed by loss of multilineage priming potential and LSC exhaustion when combination treatment was discontinued. Our work provides evidence that targeting LSC self-renewal is exploitable in the clinic to irreversibly impair quiescent LSC function in CML residual disease - with the potential to enable more CML patients to discontinue therapy and remain in therapy-free remission.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Leucemia Mieloide , Humanos , Divisão Celular , Células-Tronco Embrionárias , Neoplasia Residual , Proteína Supressora de Tumor p53/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA