Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ecol ; 32(5): 1197-1210, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36478482

RESUMO

Apicomplexans are a protozoan phylum of obligate parasites which may be highly virulent during acute infections, but may also persist as chronic infections which appear to have little fitness cost. Babesia microti is an apicomplexan haemoparasite that, in immunocompromised individuals, can cause severe, potentially fatal disease. However, in its natural host, wild field voles (Microtus agrestis), it exhibits chronic infections that have no detectable impact on survival or female fecundity. How is damage minimized, and what is the impact on the host's immune state and health? We examine the differences in immune state (here represented by expression of immune-related genes in multiple tissues) associated with several common chronic infections in a population of wild field voles. While some infections show little impact on immune state, we find strong associations between immune state and B. microti. These include indications of clearance of infected erythrocytes (increased macrophage activity in the spleen) and activity likely associated with minimizing damage from the infection (anti-inflammatory and antioxidant activity in the blood). By analysing gene expression from the same individuals at multiple time points, we show that the observed changes are a response to infection, rather than a risk factor. Our results point towards continual investment to minimize the damage caused by the infection. Thus, we shed light on how wild animals can tolerate some chronic infections, but emphasize that this tolerance does not come without a cost.


Assuntos
Babesiose , Animais , Feminino , Babesiose/epidemiologia , Babesiose/parasitologia , Roedores , Infecção Persistente , Arvicolinae , Imunomodulação
2.
Mol Ecol ; 32(13): 3471-3482, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37009948

RESUMO

Individuals differ in the nature of the immune responses they produce, affecting disease susceptibility and ultimately health and fitness. These differences have been hypothesized to have an origin in events experienced early in life that then affect trajectories of immune development and responsiveness. Here, we investigate how early-life immune expression profiles influence life history outcomes in a natural population of field voles, Microtus agrestis, in which we are able to monitor variation between and within individuals through time by repeat sampling of individually marked animals. We analysed the co-expression of 20 immune genes in early life to create a correlation network consisting of three main clusters, one of which (containing Gata3, Il10 and Il17) was associated with later-life reproductive success and susceptibility to chronic bacterial (Bartonella) infection. More detailed analyses supported associations between early-life expression of Il17 and reproductive success later in life, and of Il10 expression early in life and later infection with Bartonella. We also found significant association between an Il17 genotype and the early-life expression of Il10. Our results demonstrate that immune expression profiles can be manifested during early life with effects that persist through adulthood and that shape the variability among individuals in susceptibility to infection and fitness widely seen in natural populations.


Assuntos
Infecções por Bartonella , Bartonella , Doenças dos Roedores , Animais , Interleucina-10/genética , Roedores , Genótipo , Arvicolinae/genética , Doenças dos Roedores/microbiologia
3.
Glob Chang Biol ; 29(19): 5568-5581, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37548403

RESUMO

The increasing frequency and cost of zoonotic disease emergence due to global change have led to calls for the primary surveillance of wildlife. This should be facilitated by the ready availability of remotely sensed environmental data, given the importance of the environment in determining infectious disease dynamics. However, there has been little evaluation of the temporal predictiveness of remotely sensed environmental data for infection reservoirs in vertebrate hosts due to a deficit of corresponding high-quality long-term infection datasets. Here we employ two unique decade-spanning datasets for assemblages of infectious agents, including zoonotic agents, in rodents in stable habitats. Such stable habitats are important, as they provide the baseline sets of pathogens for the interactions within degrading habitats that have been identified as hotspots for zoonotic emergence. We focus on the enhanced vegetation index (EVI), a measure of vegetation greening that equates to primary productivity, reasoning that this would modulate infectious agent populations via trophic cascades determining host population density or immunocompetence. We found that EVI, in analyses with data standardised by site, inversely predicted more than one-third of the variation in an index of infectious agent total abundance. Moreover, in bipartite host occupancy networks, weighted network statistics (connectance and modularity) were linked to total abundance and were also predicted by EVI. Infectious agent abundance and, perhaps, community structure are likely to influence infection risk and, in turn, the probability of transboundary emergence. Thus, the present results, which were consistent in disparate forest and desert systems, provide proof-of-principle that within-site fluctuations in satellite-derived greenness indices can furnish useful forecasting that could focus primary surveillance. In relation to the well-documented global greening trend of recent decades, the present results predict declining infection burden in wild vertebrates in stable habitats; but if greening trends were to be reversed, this might magnify the already upwards trend in zoonotic emergence.


Assuntos
Ecossistema , Roedores , Animais , Animais Selvagens , Florestas
4.
J Anim Ecol ; 91(7): 1546-1553, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35694769

RESUMO

Anthropogenic releases of radiation are of ongoing importance for environmental protection, but the radiation doses at which natural systems begin to show effects are controversial. More certainty is required in this area to achieve optimal regulation for radioactive substances. We recently carried out a large survey (268 sampled animals and 20 sites) of the association between environmental radiation exposures and small mammal gut-associated microbiomes (fungal and bacterial) in the Chornobyl Exclusion zone (CEZ). Using individual measurements of total absorbed dose rates and a study design and analyses that accounted for spatial non-independence, we found no, or only limited, association. Watts et al. have criticised our study: for not filtering candidate non-resident components prior to our fungal microbiome analyses, for our qualified speculations on the relative merits of faecal and gut samples, and for the design of our study which they felt lacked sufficient replication. The advantage of filtering non-resident-fungal taxa is not clear and it would not have changed the null (spatially adjusted) association we found between radioactive dose and mycobiome composition because the most discriminatory fungal taxa with regard to dose were non-resident taxa. We maintain that it was legitimate for us to make qualified discussion comments on the differences in results between our faecal and gut microbiome analyses and on the relative merits of these sample types. Most importantly, the criticism of our study design by Watts et al. and the designs and analysis of their recent studies in the CEZ show a misunderstanding of the true nature of independent replication in field studies. Recognising the importance of spatial non-independence is essential in the design and analysis of radioecological field surveys.


Assuntos
Microbioma Gastrointestinal , Animais , Bactérias , Mamíferos
5.
J Anim Ecol ; 90(9): 2172-2187, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33901301

RESUMO

Environmental impacts of the 1986 Chernobyl Nuclear Power Plant accident are much debated, but the effects of radiation on host microbiomes have received little attention to date. We present the first analysis of small mammal gut microbiomes from the Chernobyl Exclusion Zone in relation to total absorbed dose rate, including both caecum and faeces samples. We provide novel evidence that host species determines fungal community composition, and that associations between microbiome (both bacterial and fungal) communities and radiation exposure vary between host species. Using ambient versus total weighted absorbed dose rates in analyses produced different results, with the latter more robust for interpreting microbiome changes at the individual level. We found considerable variation between results for faecal and gut samples of bank voles, suggesting faecal samples are not an accurate indicator of gut composition. Associations between radiation exposure and microbiome composition of gut samples were not robust against geographical variation, although we identified families of bacteria (Lachnospiraceae and Muribaculaceae) and fungi (Steccherinaceae and Strophariaceae) in the guts of bank voles that may serve as biomarkers of radiation exposure. Further studies considering a range of small mammal species are needed to establish the robustness of these potential biomarkers.


Assuntos
Acidente Nuclear de Chernobyl , Micobioma , Exposição à Radiação , Animais , Arvicolinae , Bactérias
6.
Parasitology ; 148(4): 451-463, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33256865

RESUMO

Helminth infections in wood mice (n = 483), trapped over a period of 26 years in the woods surrounding Malham Tarn in North Yorkshire, were analysed. Although 10 species of helminths were identified, the overall mean species richness was 1.01 species/mouse indicating that the helminth community was relatively depauperate in this wood mouse population. The dominant species was Heligmosomoides polygyrus, the prevalence (64.6%) and abundance (10.4 worms/mouse) of which declined significantly over the study period. Because of the dominance of this species, analyses of higher taxa (combined helminths and combined nematodes) also revealed significantly declining values for prevalence, although not abundance. Helminth species richness (HSR) and Brillouin's index of diversity (BID) did not show covariance with year, neither did those remaining species whose overall prevalence exceeded 5% (Syphacia stroma, Aonchotheca murissylvatici and Plagiorchis muris). Significant age effects were detected for the prevalence and abundance of all higher taxa, H. polygyrus and P. muris, and for HSR and BID, reflecting the accumulation of helminths with increasing host age. Only two cases of sex bias were found; male bias in abundance of P. muris and combined Digenea. We discuss the significance of these results and hypothesize about the underlying causes.


Assuntos
Helmintíase Animal/epidemiologia , Helmintíase Animal/parasitologia , Helmintos/classificação , Murinae/parasitologia , Doenças dos Roedores/epidemiologia , Doenças dos Roedores/parasitologia , Distribuição por Idade , Animais , Cestoides/classificação , Infecções por Cestoides/epidemiologia , Infecções por Cestoides/parasitologia , Inglaterra/epidemiologia , Feminino , Masculino , Nematoides/classificação , Infecções por Nematoides/epidemiologia , Infecções por Nematoides/parasitologia , Infecções por Nematoides/veterinária , Distribuição Normal , Prevalência , Distribuição por Sexo , Trematódeos/classificação , Infecções por Trematódeos/epidemiologia , Infecções por Trematódeos/parasitologia
7.
Mol Ecol ; 27(4): 1044-1052, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29290094

RESUMO

The animal immune response has hitherto been viewed primarily in the context of resistance only. However, individuals can also employ a tolerance strategy to maintain good health in the face of ongoing infection. To shed light on the genetic and physiological basis of tolerance, we use a natural population of field voles, Microtus agrestis, to search for an association between the expression of the transcription factor Gata3, previously identified as a marker of tolerance in this system, and polymorphism in 84 immune and nonimmune genes. Our results show clear evidence for an association between Gata3 expression and polymorphism in the Fcer1a gene, with the explanatory power of this polymorphism being comparable to that of other nongenetic variables previously identified as important predictors of Gata3 expression. We also uncover the possible mechanism behind this association using an existing protein-protein interaction network for the mouse model rodent, Mus musculus, which we validate using our own expression network for M. agrestis. Our results suggest that the polymorphism in question may be working at the transcriptional level, leading to changes in the expression of the Th2-related genes, Tyrosine-protein kinase BTK and Tyrosine-protein kinase TXK, and hence potentially altering the strength of the Th2 response, of which Gata3 is a mediator. We believe our work has implications for both treatment and control of infectious disease.


Assuntos
Adaptação Fisiológica/genética , Arvicolinae/genética , Estudos de Associação Genética , Genética Populacional , Tirosina Quinase da Agamaglobulinemia/genética , Animais , Fator de Transcrição GATA3/genética , Haplótipos/genética , Camundongos , Polimorfismo Genético , Mapas de Interação de Proteínas , Proteínas Tirosina Quinases/genética , Receptores de IgE/genética
8.
Glob Chang Biol ; 24(1): 371-386, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28746785

RESUMO

Immune defense is temperature dependent in cold-blooded vertebrates (CBVs) and thus directly impacted by global warming. We examined whether immunity and within-host infectious disease progression are altered in CBVs under realistic climate warming in a seasonal mid-latitude setting. Going further, we also examined how large thermal effects are in relation to the effects of other environmental variation in such a setting (critical to our ability to project infectious disease dynamics from thermal relationships alone). We employed the three-spined stickleback and three ecologically relevant parasite infections as a "wild" model. To generate a realistic climatic warming scenario we used naturalistic outdoors mesocosms with precise temperature control. We also conducted laboratory experiments to estimate thermal effects on immunity and within-host infectious disease progression under controlled conditions. As experimental readouts we measured disease progression for the parasites and expression in 14 immune-associated genes (providing insight into immunophenotypic responses). Our mesocosm experiment demonstrated significant perturbation due to modest warming (+2°C), altering the magnitude and phenology of disease. Our laboratory experiments demonstrated substantial thermal effects. Prevailing thermal effects were more important than lagged thermal effects and disease progression increased or decreased in severity with increasing temperature in an infection-specific way. Combining laboratory-determined thermal effects with our mesocosm data, we used inverse modeling to partition seasonal variation in Saprolegnia disease progression into a thermal effect and a latent immunocompetence effect (driven by nonthermal environmental variation and correlating with immune gene expression). The immunocompetence effect was large, accounting for at least as much variation in Saprolegnia disease as the thermal effect. This suggests that managers of CBV populations in variable environments may not be able to reliably project infectious disease risk from thermal data alone. Nevertheless, such projections would be improved by primarily considering prevailing thermal effects in the case of within-host disease and by incorporating validated measures of immunocompetence.


Assuntos
Doenças dos Peixes/parasitologia , Saprolegnia/fisiologia , Smegmamorpha/parasitologia , Animais , Doenças dos Peixes/imunologia , Aquecimento Global , Estações do Ano , Temperatura
9.
Emerg Infect Dis ; 23(6): 1033-1035, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28518021

RESUMO

We report a PCR survey of hantavirus infection in an extensive field vole (Microtus agrestis) population present in the Kielder Forest, northern England. A Tatenale virus-like lineage was frequently detected (≈17% prevalence) in liver tissue. Lineages genetically similar to Tatenale virus are likely to be endemic in northern England.


Assuntos
Anticorpos Antivirais/sangue , Infecções por Hantavirus/veterinária , Orthohantavírus/genética , RNA Viral/genética , Doenças dos Roedores/epidemiologia , Animais , Arvicolinae , Inglaterra/epidemiologia , Orthohantavírus/classificação , Orthohantavírus/imunologia , Orthohantavírus/isolamento & purificação , Infecções por Hantavirus/epidemiologia , Infecções por Hantavirus/transmissão , Infecções por Hantavirus/virologia , Fígado/virologia , Filogenia , Prevalência , Doenças dos Roedores/transmissão , Doenças dos Roedores/virologia
10.
PLoS Biol ; 12(7): e1001901, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25004450

RESUMO

Hosts are likely to respond to parasitic infections by a combination of resistance (expulsion of pathogens) and tolerance (active mitigation of pathology). Of these strategies, the basis of tolerance in animal hosts is relatively poorly understood, with especially little known about how tolerance is manifested in natural populations. We monitored a natural population of field voles using longitudinal and cross-sectional sampling modes and taking measurements on body condition, infection, immune gene expression, and survival. Using analyses stratified by life history stage, we demonstrate a pattern of tolerance to macroparasites in mature compared to immature males. In comparison to immature males, mature males resisted infection less and instead increased investment in body condition in response to accumulating burdens, but at the expense of reduced reproductive effort. We identified expression of the transcription factor Gata3 (a mediator of Th2 immunity) as an immunological biomarker of this tolerance response. Time series data for individual animals suggested that macroparasite infections gave rise to increased expression of Gata3, which gave rise to improved body condition and enhanced survival as hosts aged. These findings provide a clear and unexpected insight into tolerance responses (and their life history sequelae) in a natural vertebrate population. The demonstration that such responses (potentially promoting parasite transmission) can move from resistance to tolerance through the course of an individual's lifetime emphasises the need to incorporate them into our understanding of the dynamics and risk of infection in the natural environment. Moreover, the identification of Gata3 as a marker of tolerance to macroparasites raises important new questions regarding the role of Th2 immunity and the mechanistic nature of the tolerance response itself. A more manipulative, experimental approach is likely to be valuable in elaborating this further.


Assuntos
Arvicolinae/imunologia , Tolerância Imunológica/fisiologia , Animais , Animais Selvagens , Estudos Transversais , Fator de Transcrição GATA3/biossíntese , Interações Hospedeiro-Parasita , Estudos Longitudinais , Masculino , Doenças Parasitárias/imunologia
11.
BMC Evol Biol ; 16: 175, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27586387

RESUMO

BACKGROUND: The effect of anthropogenic environments on the function of the vertebrate immune system is a problem of general importance. For example, it relates to the increasing rates of immunologically-based disease in modern human populations and to the desirability of identifying optimal immune function in domesticated animals. Despite this importance, our present understanding is compromised by a deficit of experimental studies that make adequately matched comparisons between wild and captive vertebrates. RESULTS: We transferred post-larval fishes (three-spined sticklebacks), collected in the wild, to an anthropogenic (captive) environment. We then monitored, over 11 months, how the systemic expression of immunity genes changed in comparison to cohort-matched wild individuals in the originator population (total n = 299). We found that a range of innate (lyz, defbl2, il1r-like, tbk1) and adaptive (cd8a, igmh) immunity genes were up-regulated in captivity, accompanied by an increase in expression of the antioxidant enzyme, gpx4a. For some genes previously known to show seasonality in the wild, this appeared to be reduced in captive fishes. Captive fishes tended to express immunity genes, including igzh, foxp3b, lyz, defbl2, and il1r-like, more variably. Furthermore, although gene co-expression patterns (analyzed through gene-by-gene correlations and mutual information theory based networks) shared common structure in wild and captive fishes, there was also significant divergence. For one gene in particular, defbl2, high expression was associated with adverse health outcomes in captive fishes. CONCLUSION: Taken together, these results demonstrate widespread regulatory changes in the immune system in captive populations, and that the expression of immunity genes is more constrained in the wild. An increase in constitutive systemic immune activity, such as we observed here, may alter the risk of immunopathology and contribute to variance in health in vertebrate populations exposed to anthropogenic environments.


Assuntos
Meio Ambiente , Regulação da Expressão Gênica , Imunidade/genética , Vertebrados/genética , Vertebrados/imunologia , Imunidade Adaptativa/genética , Animais , Ecossistema , Humanos , Imunidade Inata/genética , Larva/genética , Larva/imunologia , Reação em Cadeia da Polimerase em Tempo Real , Estações do Ano , Smegmamorpha/genética , Smegmamorpha/imunologia , Regulação para Cima/genética
12.
BMC Genomics ; 17: 369, 2016 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-27189372

RESUMO

BACKGROUND: Fishes show seasonal patterns of immunity, but such phenomena are imperfectly understood in vertebrates generally, even in humans and mice. As these seasonal patterns may link to infectious disease risk and individual condition, the nature of their control has real practical implications. Here we characterize seasonal dynamics in the expression of conserved vertebrate immunity genes in a naturally-occurring piscine model, the three-spined stickleback. RESULTS: We made genome-wide measurements (RNAseq) of whole-fish mRNA pools (n = 36) at the end of summer and winter in contrasting habitats (riverine and lacustrine) and focussed on common trends to filter habitat-specific from overarching temporal responses. We corroborated this analysis with targeted year-round whole-fish gene expression (Q-PCR) studies in a different year (n = 478). We also considered seasonal tissue-specific expression (6 tissues) (n = 15) at a third contrasting (euryhaline) locality by Q-PCR, further validating the generality of the patterns seen in whole fish analyses. Extremes of season were the dominant predictor of immune expression (compared to sex, ontogeny or habitat). Signatures of adaptive immunity were elevated in late summer. In contrast, late winter was accompanied by signatures of innate immunity (including IL-1 signalling and non-classical complement activity) and modulated toll-like receptor signalling. Negative regulators of T-cell activity were prominent amongst winter-biased genes, suggesting that adaptive immunity is actively down-regulated during winter rather than passively tracking ambient temperature. Network analyses identified a small set of immune genes that might lie close to a regulatory axis. These genes acted as hubs linking summer-biased adaptive pathways, winter-biased innate pathways and other organismal processes, including growth, metabolic dynamics and responses to stress and temperature. Seasonal change was most pronounced in the gill, which contains a considerable concentration of T-cell activity in the stickleback. CONCLUSIONS: Our results suggest major and predictable seasonal re-adjustments of immunity. Further consideration should be given to the effects of such responses in seasonally-occurring disease.


Assuntos
Imunidade , Imunomodulação , Estações do Ano , Vertebrados/imunologia , Imunidade Adaptativa/genética , Animais , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Genoma , Estudo de Associação Genômica Ampla , Imunidade/genética , Imunidade Inata/genética , Imunomodulação/genética , Especificidade de Órgãos/genética , Transdução de Sinais , Receptores Toll-Like/metabolismo , Vertebrados/genética
13.
PLoS Genet ; 7(10): e1002343, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22039363

RESUMO

Pathogens are believed to drive genetic diversity at host loci involved in immunity to infectious disease. To date, studies exploring the genetic basis of pathogen resistance in the wild have focussed almost exclusively on genes of the Major Histocompatibility Complex (MHC); the role of genetic variation elsewhere in the genome as a basis for variation in pathogen resistance has rarely been explored in natural populations. Cytokines are signalling molecules with a role in many immunological and physiological processes. Here we use a natural population of field voles (Microtus agrestis) to examine how genetic diversity at a suite of cytokine and other immune loci impacts the immune response phenotype and resistance to several endemic pathogen species. By using linear models to first control for a range of non-genetic factors, we demonstrate strong effects of genetic variation at cytokine loci both on host immunological parameters and on resistance to multiple pathogens. These effects were primarily localized to three cytokine genes (Interleukin 1 beta (Il1b), Il2, and Il12b), rather than to other cytokines tested, or to membrane-bound, non-cytokine immune loci. The observed genetic effects were as great as for other intrinsic factors such as sex and body weight. Our results demonstrate that genetic diversity at cytokine loci is a novel and important source of individual variation in immune function and pathogen resistance in natural populations. The products of these loci are therefore likely to affect interactions between pathogens and help determine survival and reproductive success in natural populations. Our study also highlights the utility of wild rodents as a model of ecological immunology, to better understand the causes and consequences of variation in immune function in natural populations including humans.


Assuntos
Arvicolinae/genética , Variação Genética , Interações Hospedeiro-Patógeno/genética , Subunidade p40 da Interleucina-12/genética , Interleucina-1beta/genética , Interleucina-2/genética , Animais , Arvicolinae/imunologia , Arvicolinae/parasitologia , Patógenos Transmitidos pelo Sangue , Frequência do Gene , Genes MHC da Classe II , Estudos de Associação Genética , Subunidade p40 da Interleucina-12/imunologia , Interleucina-1beta/imunologia , Interleucina-2/imunologia , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único
14.
Discov Immunol ; 3(1): kyae007, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38863794

RESUMO

Immune responses are widely accepted to be under circadian regulation via a molecular clock, with many practical consequences, but much less is known of how other biological rhythms could affect the immune system. In this study, we search for lunar rhythms (circalunar, circasemilunar, and circatidal cycles) in the immune expression of the recently marine-derived freshwater fish, the low-plate morph of the three-spined stickleback. We employed time series of immune expression (mRNA) measurements for 14 immune-associated genes, representing a variety of immunological pathways. Times series measurements were taken on fish populations in the wild, in seminatural outdoor mesocosms, and in the laboratory, according to sampling regimens originally designed to study circannual variation but with the additional potential to provide information about lunar variation. Our evidence best supported the existence of a very small endogenous tidal rhythm. This is consistent with previous suggestions of the existence of a primordial tidal endogenous clock, some elements of which may be conserved in animals evolving outside the marine environment.

15.
Acad Med ; 98(6): 709-716, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36656280

RESUMO

PURPOSE: Little is known about the nature of shame in students attempting to enter medical school, despite its potential to impact well-being and professional identity formation during training. In this study, the authors used hermeneutic phenomenology to ask: How do premedical students experience shame as they apply to medical school? METHOD: From September 2020 to March 2021, the authors recruited 12 students from a U.S. Master of Biomedical Sciences program who intended to apply to medical school. Data collection consisted of each participant creating a "rich picture" depicting a shame experience during their premedical training, a semistructured interview that deeply explored this and other shame experiences, and a debriefing session. Data were analyzed using Ajjawi and Higgs's 6 steps of hermeneutic analysis. RESULTS: Self-concept, composed of an individual's identities and contingencies of self-esteem, was central to participants' shame experiences. Through a confluence of past and future self-concepts and under the influence of external factors and the weight of expectations, shame often destabilized participants' present self-concepts. This destabilization occurred because of events related to application processes (repeat Medical College Admission Test attempts), interpersonal interactions (prehealth advisor meetings), and objective performance measures (grades, test scores). Participants' efforts to restabilize their self-concept catalyzed specific identity processes and self-concept formation. CONCLUSIONS: Shame provided a window into the emotional experiences, identity processes, and ideologies that shape students' attempts to enter medical school. The authors discuss the central role of contingencies of self-esteem, the potential origins of performance-based self-esteem in trainees, and the identity negotiation and identity work involved in shame reactions. They call for the adoption of contingencies of self-esteem within current conceptualizations of professional identity formation; training for faculty and prehealth advisors about the nature of shame in premedical learners; and consideration of the consequential validity of standardized tests, which may trigger damaging shame.


Assuntos
Vergonha , Estudantes Pré-Médicos , Humanos , Hermenêutica , Emoções , Currículo
16.
Elife ; 122023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36645701

RESUMO

The genotype of an individual is an important predictor of their immune function, and subsequently, their ability to control or avoid infection and ultimately contribute offspring to the next generation. However, the same genotype, subjected to different intrinsic and/or extrinsic environments, can also result in different phenotypic outcomes, which can be missed in controlled laboratory studies. Natural wildlife populations, which capture both genotypic and environmental variability, provide an opportunity to more fully understand the phenotypic expression of genetic variation. We identified a synonymous polymorphism in the high-affinity Immunoglobulin E (IgE) receptor (GC and non-GC haplotypes) that has sex-dependent effects on immune gene expression, susceptibility to infection, and reproductive success of individuals in a natural population of field voles (Microtus agrestis). We found that the effect of the GC haplotype on the expression of immune genes differed between sexes. Regardless of sex, both pro-inflammatory and anti-inflammatory genes were more highly relatively expressed in individuals with the GC haplotype than individuals without the haplotype. However, males with the GC haplotype showed a stronger signal for pro-inflammatory genes, while females showed a stronger signal for anti-inflammatory genes. Furthermore, we found an effect of the GC haplotype on the probability of infection with a common microparasite, Babesia microti, in females - with females carrying the GC haplotype being more likely to be infected. Finally, we found an effect of the GC haplotype on reproductive success in males - with males carrying the GC haplotype having a lower reproductive success. This is a rare example of a polymorphism whose consequences we are able to follow across immunity, infection, and reproduction for both males and females in a natural population.


Assuntos
Receptores de IgE , Roedores , Animais , Masculino , Feminino , Polimorfismo Genético , Genótipo , Haplótipos , Reprodução/genética
17.
Mol Ecol ; 21(7): 1632-46, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22364125

RESUMO

Individuals in natural populations are frequently exposed to a wide range of pathogens. Given the diverse profile of gene products involved in responses to different types of pathogen, this potentially results in complex pathogen-specific selection pressures acting on a broad spectrum of immune system genes in wild animals. Thus far, studies into the evolution of immune genes in natural populations have focused almost exclusively on the Major Histocompatibility Complex (MHC). However, the MHC represents only a fraction of the immune system and there is a need to broaden research in wild species to include other immune genes. Here, we examine the evidence for natural selection in a range of non-MHC genes in a natural population of field voles (Microtus agrestis). We concentrate primarily on genes encoding cytokines, signalling molecules critical in eliciting and mediating immune responses and identify signatures of natural selection acting on several of these genes. In particular, genetic diversity within Interleukin 1 beta and Interleukin 2 appears to have been maintained through balancing selection. Taken together with previous findings that polymorphism within these genes is associated with variation in resistance to multiple pathogens, this suggests that pathogen-mediated selection may be an important force driving genetic diversity at cytokine loci in voles and other natural populations. These results also suggest that, along with the MHC, preservation of genetic variation within cytokine genes should be a priority for the conservation genetics of threatened wildlife populations.


Assuntos
Arvicolinae/genética , Citocinas/genética , Variação Genética , Seleção Genética , Animais , Arvicolinae/imunologia , Genética Populacional , Técnicas de Genotipagem , Haplótipos , Interleucina-1beta/genética , Interleucina-2/genética , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
18.
Mol Ecol ; 20(5): 893-909, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21059128

RESUMO

A revolutionary advance in ecological immunology is that postgenomic technologies now allow molecular mediators defined in laboratory models to be measured at the mRNA level in field studies of many naturally occurring species. Here, we demonstrate the application of such an approach to generate meaningful immunological profiles for wild mammals. We sampled a natural field vole population across the year (n = 307) and developed a battery of cellular assays in which functionally different pro- and anti-inflammatory signalling responses (transcription factors and cytokines) were activated and quantified by Q-PCR. Temporal trends were the strongest feature in the expression data, although some life history stages (mating vs. nonmating males and pregnant females) were also associated with significant variation. There was a striking set of significant negative associations between inflammatory mediators and condition indices reflecting packed erythrocyte volume and relative liver size, spleen size and splenocyte count. Grouped (principal component) measures of inflammatory and anti-inflammatory expression were high in winter, with minima in the breeding season that occurred earlier for grouped anti-inflammatory responses than for grouped inflammatory responses. Some individual immunological mediators also showed patterns unrelated to the breeding season or annual periodic cues. For example, interferon regulatory factor 5 (IRF5) expression declined throughout the study period, indicating a systematic trend in antimicrobial defences. Pinpointing the causes and consequences of such variation may help identify underlying environmental drivers of individual fitness and demographic fluctuation.


Assuntos
Arvicolinae/imunologia , Inflamação/imunologia , Animais , Animais Selvagens/sangue , Animais Selvagens/imunologia , Arvicolinae/sangue , Células Cultivadas , Volume de Eritrócitos , Feminino , Perfilação da Expressão Gênica , Inflamação/sangue , Fatores Reguladores de Interferon/metabolismo , Masculino , Mitógenos/farmacologia , Análise Multivariada , Tamanho do Órgão , Gravidez , Estações do Ano , Baço/citologia , Baço/efeitos dos fármacos , Baço/imunologia , Fatores de Tempo
19.
BMC Biol ; 7: 16, 2009 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-19386086

RESUMO

BACKGROUND: Immunological analyses of wild populations can increase our understanding of how vertebrate immune systems respond to 'natural' levels of exposure to diverse infections. A major recent advance in immunology has been the recognition of the central role of phylogenetically conserved toll-like receptors in triggering innate immunity and the subsequent recruitment of adaptive response programmes. We studied the cross-sectional associations between individual levels of systemic toll-like receptor-mediated tumour necrosis factor alpha responsiveness and macro- and microparasite infections in a natural wood mouse (Apodemus sylvaticus) population. RESULTS: Amongst a diverse group of macroparasites, only levels of the nematode Heligmosomoides polygyrus and the louse Polyplax serrata were correlated (negatively) with innate immune responsiveness (measured by splenocyte tumour necrosis factor alpha responses to a panel of toll-like receptor agonists). Polyplax serrata infection explained a strikingly high proportion of the total variation in innate responses. Contrastingly, faecal oocyst count in microparasitic Eimeria spp. was positively associated with innate immune responsiveness, most significantly for the endosomal receptors TLR7 and TLR9. CONCLUSION: Analogy with relevant laboratory models suggests the underlying causality for the observed patterns may be parasite-driven immunomodulatory effects on the host. A subset of immunomodulatory parasite species could thus have a key role in structuring other infections in natural vertebrate populations by affecting the 'upstream' innate mediators, like toll-like receptors, that are important in initiating immunity. Furthermore, the magnitude of the present result suggests that populations free from immunosuppressive parasites may exist at 'unnaturally' elevated levels of innate immune activation, perhaps leading to an increased risk of immunopathology.


Assuntos
Fatores Imunológicos/imunologia , Murinae/imunologia , Murinae/parasitologia , Parasitos/imunologia , Receptores Toll-Like/imunologia , Fator de Necrose Tumoral alfa/imunologia , Animais , Animais Selvagens/imunologia , Animais Selvagens/parasitologia , Anoplura/imunologia , Interações Hospedeiro-Parasita , Modelos Lineares , Nematospiroides dubius/imunologia , Baço/citologia , Baço/imunologia , Infecções por Strongylida/imunologia
20.
Sci Total Environ ; 747: 141152, 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-32799018

RESUMO

By determining susceptibility to disease, environment-driven variation in immune responses can affect the health, productivity and fitness of vertebrates. Yet how the different components of the total environment control this immune variation is remarkably poorly understood. Here, through combining field observation, experimentation and modelling, we are able to quantitatively partition the key environmental drivers of constitutive immune allocation in a model wild vertebrate (three-spined stickleback, Gasterosteus aculeatus). We demonstrate that, in natural populations, thermal conditions and diet alone are sufficient (and necessary) to explain a dominant (seasonal) axis of variation in immune allocation. This dominant axis contributes to both infection resistance and tolerance and, in turn, to the vital rates of infectious agents and the progression of the disease they cause. Our results illuminate the environmental regulation of vertebrate immunity (given the evolutionary conservation of the molecular pathways involved) and they identify mechanisms through which immunocompetence and host-parasite dynamics might be impacted by changing environments. In particular, we predict a dominant sensitivity of immunocompetence and immunocompetence-driven host-pathogen dynamics to host diet shifts.


Assuntos
Smegmamorpha , Animais , Imunidade , Imunocompetência , Vertebrados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA