Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 169(1): 6-12, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28340351

RESUMO

Genome sequencing has revolutionized the diagnosis of genetic diseases. Close collaborations between basic scientists and clinical genomicists are now needed to link genetic variants with disease causation. To facilitate such collaborations, we recommend prioritizing clinically relevant genes for functional studies, developing reference variant-phenotype databases, adopting phenotype description standards, and promoting data sharing.


Assuntos
Pesquisa Biomédica , Genômica , Animais , Análise Mutacional de DNA , Bases de Dados Genéticas , Doença/genética , Projeto Genoma Humano , Humanos , Disseminação de Informação , Modelos Animais
2.
Br J Cancer ; 124(4): 760-769, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33139798

RESUMO

BACKGROUND: The balance between immune-stimulatory and immune-suppressive mechanisms in the tumour microenvironment is associated with tumour rejection and can predict the efficacy of immune checkpoint-inhibition therapies. METHODS: We consider the observed differences between the transcriptional programmes associated with cancer types where the levels of immune infiltration predict a favourable prognosis versus those in which the immune infiltration predicts an unfavourable prognosis and defined a score named Mediators of Immune Response Against Cancer in soLid microEnvironments (MIRACLE). MIRACLE deconvolves T cell infiltration, from inhibitory mechanisms, such as TGFß, EMT and PI3Kγ signatures. RESULTS: Our score outperforms current state-of-the-art immune signatures as a predictive marker of survival in TCGA (n = 9305, HR: 0.043, p value: 6.7 × 10-36). In a validation cohort (n = 7623), MIRACLE predicts better survival compared to other immune metrics (HR: 0.1985, p value: 2.73 × 10-38). MIRACLE also predicts response to checkpoint-inhibitor therapies (n = 333). The tumour-intrinsic factors inversely associated with the reported score such as EGFR, PRKAR1A and MAP3K1 are frequently associated with immune-suppressive phenotypes. CONCLUSIONS: The association of cancer outcome with the level of infiltrating immune cells is mediated by the balance of activatory and suppressive factors. MIRACLE accounts for this balance and predicts favourable cancer outcomes.


Assuntos
Neoplasias/genética , Neoplasias/imunologia , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Estudos de Coortes , Bases de Dados Genéticas , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Vigilância Imunológica , Linfócitos do Interstício Tumoral/imunologia , Neoplasias/tratamento farmacológico , Neoplasias/mortalidade , Análise de Sobrevida
3.
N Engl J Med ; 379(22): 2131-2139, 2018 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-30304647

RESUMO

BACKGROUND: Many patients remain without a diagnosis despite extensive medical evaluation. The Undiagnosed Diseases Network (UDN) was established to apply a multidisciplinary model in the evaluation of the most challenging cases and to identify the biologic characteristics of newly discovered diseases. The UDN, which is funded by the National Institutes of Health, was formed in 2014 as a network of seven clinical sites, two sequencing cores, and a coordinating center. Later, a central biorepository, a metabolomics core, and a model organisms screening center were added. METHODS: We evaluated patients who were referred to the UDN over a period of 20 months. The patients were required to have an undiagnosed condition despite thorough evaluation by a health care provider. We determined the rate of diagnosis among patients who subsequently had a complete evaluation, and we observed the effect of diagnosis on medical care. RESULTS: A total of 1519 patients (53% female) were referred to the UDN, of whom 601 (40%) were accepted for evaluation. Of the accepted patients, 192 (32%) had previously undergone exome sequencing. Symptoms were neurologic in 40% of the applicants, musculoskeletal in 10%, immunologic in 7%, gastrointestinal in 7%, and rheumatologic in 6%. Of the 382 patients who had a complete evaluation, 132 received a diagnosis, yielding a rate of diagnosis of 35%. A total of 15 diagnoses (11%) were made by clinical review alone, and 98 (74%) were made by exome or genome sequencing. Of the diagnoses, 21% led to recommendations regarding changes in therapy, 37% led to changes in diagnostic testing, and 36% led to variant-specific genetic counseling. We defined 31 new syndromes. CONCLUSIONS: The UDN established a diagnosis in 132 of the 382 patients who had a complete evaluation, yielding a rate of diagnosis of 35%. (Funded by the National Institutes of Health Common Fund.).


Assuntos
Testes Genéticos , Doenças Raras/genética , Análise de Sequência de DNA , Adulto , Animais , Criança , Diagnóstico Diferencial , Drosophila , Exoma , Feminino , Testes Genéticos/economia , Custos de Cuidados de Saúde/estatística & dados numéricos , Humanos , Masculino , Modelos Animais , National Institutes of Health (U.S.) , Doenças Raras/diagnóstico , Síndrome , Estados Unidos
4.
J Am Soc Nephrol ; 31(4): 687-700, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32029431

RESUMO

BACKGROUND: The genes and mechanisms involved in the association between diabetes or hypertension and CKD risk are unclear. Previous studies have implicated a role for γ-adducin (ADD3), a cytoskeletal protein encoded by Add3. METHODS: We investigated renal vascular function in vitro and in vivo and the susceptibility to CKD in rats with wild-type or mutated Add3 and in genetically modified rats with overexpression or knockout of ADD3. We also studied glomeruli and primary renal vascular smooth muscle cells isolated from these rats. RESULTS: This study identified a K572Q mutation in ADD3 in fawn-hooded hypertensive (FHH) rats-a mutation previously reported in Milan normotensive (MNS) rats that also develop kidney disease. Using molecular dynamic simulations, we found that this mutation destabilizes a critical ADD3-ACTIN binding site. A reduction of ADD3 expression in membrane fractions prepared from the kidney and renal vascular smooth muscle cells of FHH rats was associated with the disruption of the F-actin cytoskeleton. Compared with renal vascular smooth muscle cells from Add3 transgenic rats, those from FHH rats had elevated membrane expression of BKα and BK channel current. FHH and Add3 knockout rats exhibited impairments in the myogenic response of afferent arterioles and in renal blood flow autoregulation, which were rescued in Add3 transgenic rats. We confirmed these findings in a genetic complementation study that involved crossing FHH and MNS rats that share the ADD3 mutation. Add3 transgenic rats showed attenuation of proteinuria, glomerular injury, and kidney fibrosis with aging and mineralocorticoid-induced hypertension. CONCLUSIONS: This is the first report that a mutation in ADD3 that alters ACTIN binding causes renal vascular dysfunction and promotes the susceptibility to kidney disease.


Assuntos
Proteínas de Ligação a Calmodulina/genética , Hipertensão/complicações , Nefropatias/etiologia , Mutação/efeitos dos fármacos , Circulação Renal/genética , Animais , Modelos Animais de Doenças , Homeostase , Hipertensão/genética , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Masculino , Músculo Liso Vascular/fisiologia , Miócitos de Músculo Liso/metabolismo , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos
5.
J Am Soc Nephrol ; 29(5): 1525-1535, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29476007

RESUMO

Background Interpreting genetic variants is one of the greatest challenges impeding analysis of rapidly increasing volumes of genomic data from patients. For example, SHROOM3 is an associated risk gene for CKD, yet causative mechanism(s) of SHROOM3 allele(s) are unknown.Methods We used our analytic pipeline that integrates genetic, computational, biochemical, CRISPR/Cas9 editing, molecular, and physiologic data to characterize coding and noncoding variants to study the human SHROOM3 risk locus for CKD.Results We identified a novel SHROOM3 transcriptional start site, which results in a shorter isoform lacking the PDZ domain and is regulated by a common noncoding sequence variant associated with CKD (rs17319721, allele frequency: 0.35). This variant disrupted allele binding to the transcription factor TCF7L2 in podocyte cell nuclear extracts and altered transcription levels of SHROOM3 in cultured cells, potentially through the loss of repressive looping between rs17319721 and the novel start site. Although common variant mechanisms are of high utility, sequencing is beginning to identify rare variants involved in disease; therefore, we used our biophysical tools to analyze an average of 112,849 individual human genome sequences for rare SHROOM3 missense variants, revealing 35 high-effect variants. The high-effect alleles include a coding variant (P1244L) previously associated with CKD (P=0.01, odds ratio=7.95; 95% CI, 1.53 to 41.46) that we find to be present in East Asian individuals at an allele frequency of 0.0027. We determined that P1244L attenuates the interaction of SHROOM3 with 14-3-3, suggesting alterations to the Hippo pathway, a known mediator of CKD.Conclusions These data demonstrate multiple new SHROOM3-dependent genetic/molecular mechanisms that likely affect CKD.


Assuntos
Proteínas dos Microfilamentos/genética , Insuficiência Renal Crônica/genética , Alelos , Animais , Núcleo Celular , Frequência do Gene , Loci Gênicos , Células HEK293 , Humanos , Camundongos , Mutação de Sentido Incorreto , Podócitos , Isoformas de Proteínas/genética , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética , Transcrição Gênica , Peixe-Zebra
6.
Genome Res ; 25(1): 57-65, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25273069

RESUMO

Genome-wide association studies (GWAS) identify regions of the genome correlated with disease risk but are restricted in their ability to identify the underlying causative mechanism(s). Thus, GWAS are useful "roadmaps" that require functional analysis to establish the genetic and mechanistic structure of a particular locus. Unfortunately, direct functional testing in humans is limited, demonstrating the need for complementary approaches. Here we used an integrated approach combining zebrafish, rat, and human data to interrogate the function of an established GWAS locus (SHROOM3) lacking prior functional support for chronic kidney disease (CKD). Congenic mapping and sequence analysis in rats suggested Shroom3 was a strong positional candidate gene. Transferring a 6.1-Mb region containing the wild-type Shroom3 gene significantly improved the kidney glomerular function in FHH (fawn-hooded hypertensive) rat. The wild-type Shroom3 allele, but not the FHH Shroom3 allele, rescued glomerular defects induced by knockdown of endogenous shroom3 in zebrafish, suggesting that the FHH Shroom3 allele is defective and likely contributes to renal injury in the FHH rat. We also show for the first time that variants disrupting the actin-binding domain of SHROOM3 may cause podocyte effacement and impairment of the glomerular filtration barrier.


Assuntos
Barreira de Filtração Glomerular/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Alelos , Sequência de Aminoácidos , Animais , Animais Congênicos , Animais Geneticamente Modificados , Clonagem Molecular , Éxons , Feminino , Loci Gênicos , Variação Genética , Estudo de Associação Genômica Ampla , Humanos , Nefropatias/genética , Masculino , Proteínas dos Microfilamentos/genética , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Plasmídeos/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Análise de Sequência de DNA , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
7.
Proc Natl Acad Sci U S A ; 111(35): 12817-22, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25136115

RESUMO

PLEKHA7 (pleckstrin homology domain containing family A member 7) has been found in multiple studies as a candidate gene for human hypertension, yet functional data supporting this association are lacking. We investigated the contribution of this gene to the pathogenesis of salt-sensitive hypertension by mutating Plekha7 in the Dahl salt-sensitive (SS/JrHsdMcwi) rat using zinc-finger nuclease technology. After four weeks on an 8% NaCl diet, homozygous mutant rats had lower mean arterial (149 ± 9 mmHg vs. 178 ± 7 mmHg; P < 0.05) and systolic (180 ± 7 mmHg vs. 213 ± 8 mmHg; P < 0.05) blood pressure compared with WT littermates. Albumin and protein excretion rates were also significantly lower in mutant rats, demonstrating a renoprotective effect of the mutation. Total peripheral resistance and perivascular fibrosis in the heart and kidney were significantly reduced in Plekha7 mutant animals, suggesting a potential role of the vasculature in the attenuation of hypertension. Indeed, both flow-mediated dilation and endothelium-dependent vasodilation in response to acetylcholine were improved in isolated mesenteric resistance arteries of Plekha7 mutant rats compared with WT. These vascular improvements were correlated with changes in intracellular calcium handling, resulting in increased nitric oxide bioavailability in mutant vessels. Collectively, these data provide the first functional evidence that Plekha7 may contribute to blood pressure regulation and cardiovascular function through its effects on the vasculature.


Assuntos
Pressão Sanguínea/genética , Proteínas de Transporte/genética , Hipertensão Renal/genética , Cloreto de Sódio/farmacologia , Albuminúria/genética , Albuminúria/patologia , Albuminúria/fisiopatologia , Animais , Pressão Sanguínea/fisiologia , Cálcio/metabolismo , Débito Cardíaco/genética , Débito Cardíaco/fisiologia , Proteínas de Transporte/fisiologia , Modelos Animais de Doenças , Células Endoteliais/fisiologia , Estudo de Associação Genômica Ampla , Hipertensão Renal/patologia , Hipertensão Renal/fisiopatologia , Artérias Mesentéricas/fisiologia , Óxido Nítrico/metabolismo , Ratos , Ratos Endogâmicos Dahl , Ratos Mutantes , Resistência Vascular/genética , Resistência Vascular/fisiologia
9.
Genome Res ; 23(12): 1996-2002, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24006081

RESUMO

Genome-wide association studies (GWAS) are useful for nominating candidate genes, but typically are unable to establish disease causality or differentiate between the effects of variants in linkage disequilibrium (LD). Additionally, some GWAS loci might contain multiple causative variants or genes that contribute to the overall disease susceptibility at a single locus. However, the majority of current GWAS lack the statistical power to test whether multiple causative genes underlie the same locus, prompting us to adopt an alternative approach to testing multiple GWAS genes empirically. We used gene targeting in a disease-susceptible rat model of genetic hypertension to test all six genes at the Agtrap-Plod1 locus (Agtrap, Mthfr, Clcn6, Nppa, Nppb, and Plod1) for blood pressure (BP) and renal phenotypes. This revealed that the majority of genes at this locus (five out of six) can impact hypertension by modifying BP and renal phenotypes. Mutations of Nppa, Plod1, and Mthfr increased disease susceptibility, whereas Agtrap and Clcn6 mutations decreased hypertension risk. Reanalysis of the human AGTRAP-PLOD1 locus also implied that disease-associated haplotype blocks with polygenic effects were not only possible, but rather were highly plausible. Combined, these data demonstrate for the first time that multiple modifiers of hypertension can cosegregate at a single GWAS locus.


Assuntos
Pressão Sanguínea/genética , Genes Modificadores , Hipertensão/etiologia , Hipertensão/genética , Rim/metabolismo , Locos de Características Quantitativas , Animais , Modelos Animais de Doenças , Feminino , Marcação de Genes , Predisposição Genética para Doença , Variação Genética , Estudo de Associação Genômica Ampla , Haplótipos , Humanos , Desequilíbrio de Ligação , Masculino , Mutação , Fenótipo , Polimorfismo de Nucleotídeo Único , Ratos , Ratos Sprague-Dawley , Estudos Retrospectivos
10.
Bioinformatics ; 31(1): 25-32, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25217576

RESUMO

MOTIVATION: RNA-Seq (also called whole-transcriptome sequencing) is an emerging technology that uses the capabilities of next-generation sequencing to detect and quantify entire transcripts. One of its important applications is the improvement of existing genome annotations. RNA-Seq provides rapid, comprehensive and cost-effective tools for the discovery of novel genes and transcripts compared with expressed sequence tag (EST), which is instrumental in gene discovery and gene sequence determination. The rat is widely used as a laboratory disease model, but has a less well-annotated genome as compared with humans and mice. In this study, we incorporated deep RNA-Seq data from three rat tissues-bone marrow, brain and kidney-with EST data to improve the annotation of the rat genome. RESULTS: Our analysis identified 32 197 transcripts, including 13 461 known transcripts, 13 934 novel isoforms and 4802 new genes, which almost doubled the numbers of transcripts in the current public rat genome database (rn5). Comparisons of our predicted protein-coding gene sets with those in public datasets suggest that RNA-Seq significantly improves genome annotation and identifies novel genes and isoforms in the rat. Importantly, the large majority of novel genes and isoforms are supported by direct evidence of RNA-Seq experiments. These predicted genes were integrated into the Rat Genome Database (RGD) and can serve as an important resource for functional studies in the research community. AVAILABILITY AND IMPLEMENTATION: The predicted genes are available at http://rgd.mcw.edu.


Assuntos
Genoma , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Anotação de Sequência Molecular , RNA/genética , Transcriptoma , Animais , Etiquetas de Sequências Expressas , Variação Genética , Camundongos , Ratos
11.
Kidney Int ; 88(4): 796-803, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26108065

RESUMO

Antithrombin III, encoded by SerpinC1, is a major anti-coagulation molecule in vivo and has anti-inflammatory effects. We found that patients with low antithrombin III activities presented a higher risk of developing acute kidney injury after cardiac surgery. To study this further, we generated SerpinC1 heterozygous knockout rats and followed the development of acute kidney injury in a model of modest renal ischemia/reperfusion injury. Renal injury, assessed by serum creatinine and renal tubular injury scores after 24 h of reperfusion, was significantly exacerbated in SerpinC1(+/-) rats compared to wild-type littermates. Concomitantly, renal oxidative stress, tubular apoptosis, and macrophage infiltration following this injury were significantly aggravated in SerpinC1(+/-) rats. However, significant thrombosis was not found in the kidneys of any group of rats. Antithrombin III is reported to stimulate the production of prostaglandin I2, a known regulator of renal cortical blood flow, in addition to having anti-inflammatory effects and to protect against renal failure. Prostaglandin F1α, an assayable metabolite of prostaglandin I2, was increased in the kidneys of the wild-type rats at 3 h after reperfusion. The increase of prostaglandin F1α was significantly blunted in SerpinC1(+/-) rats, which preceded increased tubular injury and oxidative stress. Thus, our study found a novel role of SerpinC1 insufficiency in increasing the severity of renal ischemia/reperfusion injury.


Assuntos
Injúria Renal Aguda/etiologia , Deficiência de Antitrombina III/complicações , Antitrombina III/metabolismo , Rim/metabolismo , Traumatismo por Reperfusão/etiologia , Injúria Renal Aguda/genética , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Idoso , Animais , Antitrombina III/análise , Antitrombina III/genética , Deficiência de Antitrombina III/genética , Deficiência de Antitrombina III/metabolismo , Apoptose , Biomarcadores/sangue , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Creatinina/sangue , Modelos Animais de Doenças , Feminino , Técnicas de Silenciamento de Genes , Predisposição Genética para Doença , Heterozigoto , Humanos , Rim/patologia , Macrófagos/metabolismo , Masculino , Pessoa de Meia-Idade , Estresse Oxidativo , Fenótipo , Prostaglandinas F/metabolismo , Ratos Transgênicos , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Fatores de Risco , Índice de Gravidade de Doença , Transdução de Sinais , Fatores de Tempo
12.
Brief Bioinform ; 14(4): 520-6, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23434633

RESUMO

The Rat Genome Database (RGD) was started >10 years ago to provide a core genomic resource for rat researchers. Currently, RGD combines genetic, genomic, pathway, phenotype and strain information with a focus on disease. RGD users are provided with access to structured and curated data from the molecular level through the organismal level. Those users access RGD from all over the world. End users are not only rat researchers but also researchers working with mouse and human data. Translational research is supported by RGD's comparative genetics/genomics data in disease portals, in GBrowse, in VCMap and on gene report pages. The impact of RGD also goes beyond the traditional biomedical researcher, as the influence of RGD reaches bioinformaticians, tool developers and curators. Import of RGD data into other publicly available databases expands the influence of RGD to a larger set of end users than those who avail themselves of the RGD website. The value of RGD continues to grow as more types of data and more tools are added, while reaching more types of end users.


Assuntos
Bases de Dados Genéticas , Genoma , Animais , Humanos , Camundongos , Fenótipo , Ratos
13.
Am J Physiol Regul Integr Comp Physiol ; 308(5): R379-90, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25540098

RESUMO

We have reported that a reduction in renal production of 20-HETE contributes to development of hypertension in Dahl salt-sensitive (SS) rats. The present study examined whether 20-HETE production is also reduced in the cerebral vasculature of SS rats and whether this impairs the myogenic response and autoregulation of cerebral blood flow (CBF). The production of 20-HETE, the myogenic response of middle cerebral arteries (MCA), and autoregulation of CBF were compared in SS, SS-5(BN) rats and a newly generated CYP4A1 transgenic rat. 20-HETE production was 6-fold higher in cerebral arteries of CYP4A1 and SS-5(BN) than in SS rats. The diameter of the MCA decreased to 70 ± 3% to 65 ± 6% in CYP4A1 and SS-5(BN) rats when pressure was increased from 40 to 140 mmHg. In contrast, the myogenic response of MCA isolated from SS rats did not constrict. Administration of a 20-HETE synthesis inhibitor, HET0016, abolished the myogenic response of MCA in CYP4A1 and SS-5(BN) rats but had no effect in SS rats. Autoregulation of CBF was impaired in SS rats compared with CYP4A1 and SS-5(BN) rats. Blood-brain barrier leakage was 5-fold higher in the brain of SS rats than in SS-5(BN) and SS.CYP4A1 rats. These findings indicate that a genetic deficiency in the formation of 20-HETE contributes to an impaired myogenic response in MCA and autoregulation of CBF in SS rats and this may contribute to vascular remodeling and cerebral injury following the onset of hypertension.


Assuntos
Circulação Cerebrovascular , Citocromo P-450 CYP4A/metabolismo , Hipertensão/enzimologia , Artéria Cerebral Média/enzimologia , Cloreto de Sódio na Dieta , Vasoconstrição , Animais , Pressão Arterial , Barreira Hematoencefálica/metabolismo , Permeabilidade Capilar , Citocromo P-450 CYP4A/genética , Modelos Animais de Doenças , Genótipo , Homeostase , Ácidos Hidroxieicosatetraenoicos/metabolismo , Hipertensão/genética , Hipertensão/fisiopatologia , Artéria Cerebral Média/fisiopatologia , Fenótipo , Ratos Endogâmicos Dahl , Ratos Endogâmicos Lew , Ratos Transgênicos , Transposases/genética , Remodelação Vascular
14.
Hum Genomics ; 8: 17, 2014 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-25265995

RESUMO

BACKGROUND: Biological systems are exquisitely poised to respond and adjust to challenges, including damage. However, sustained damage can overcome the ability of the system to adjust and result in a disease phenotype, its underpinnings many times elusive. Unraveling the molecular mechanisms of systems biology, of how and why it falters, is essential for delineating the details of the path(s) leading to the diseased state and for designing strategies to revert its progression. An important aspect of this process is not only to define the function of a gene but to identify the context within which gene functions act. It is within the network, or pathway context, that the function of a gene fulfills its ultimate biological role. Resolving the extent to which defective function(s) affect the proceedings of pathway(s) and how altered pathways merge into overpowering the system's defense machinery are key to understanding the molecular aspects of disease and envisioning ways to counteract it. A network-centric approach to diseases is increasingly being considered in current research. It also underlies the deployment of disease pathways at the Rat Genome Database Pathway Portal. The portal is presented with an emphasis on disease and altered pathways, associated drug pathways, pathway suites, and suite networks. RESULTS: The Pathway Portal at the Rat Genome Database (RGD) provides an ever-increasing collection of interactive pathway diagrams and associated annotations for metabolic, signaling, regulatory, and drug pathways, including disease and altered pathways. A disease pathway is viewed from the perspective of networks whose alterations are manifested in the affected phenotype. The Pathway Ontology (PW), built and maintained at RGD, facilitates the annotations of genes, the deployment of pathway diagrams, and provides an overall navigational tool. Pathways that revolve around a common concept and are globally connected are presented within pathway suites; a suite network combines two or more pathway suites. CONCLUSIONS: The Pathway Portal is a rich resource that offers a range of pathway data and visualization, including disease pathways and related pathway suites. Viewing a disease pathway from the perspective of underlying altered pathways is an aid for dissecting the molecular mechanisms of disease.


Assuntos
Bases de Dados Genéticas , Redes Reguladoras de Genes/genética , Genoma , Redes e Vias Metabólicas/genética , Biologia de Sistemas/métodos , Animais , Modelos Animais de Doenças , Feminino , Masculino , Anotação de Sequência Molecular , Fenótipo , Ratos , Transdução de Sinais , Interface Usuário-Computador
15.
Gen Comp Endocrinol ; 215: 106-16, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25260253

RESUMO

The details of protein pathways at a structural level provides a bridge between genetics/molecular biology and physiology. The renin-angiotensin system is involved in many physiological pathways with informative structural details in multiple components. Few studies have been performed assessing structural knowledge across the system. This assessment allows use of bioinformatics tools to fill in missing structural voids. In this paper we detail known structures of the renin-angiotensin system and use computational approaches to estimate and model components that do not have their protein structures defined. With the subsequent large library of protein structures, we then created a species specific protein library for human, mouse, rat, bovine, zebrafish, and chicken for the system. The rat structural system allowed for rapid screening of genetic variants from 51 commonly used rat strains, identifying amino acid variants in angiotensinogen, ACE2, and AT1b that are in contact positions with other macromolecules. We believe the structural map will be of value for other researchers to understand their experimental data in the context of an environment for multiple proteins, providing pdb files of proteins for the renin-angiotensin system in six species. With detailed structural descriptions of each protein, it is easier to assess a species for use in translating human diseases with animal models. Additionally, as whole genome sequencing continues to decrease in cost, tools such as molecular modeling will gain use as an initial step in designing efficient hypothesis driven research, addressing potential functional outcomes of genetic variants with precompiled protein libraries aiding in rapid characterizations.


Assuntos
Angiotensinogênio/química , Evolução Biológica , Biologia Computacional , Modelos Moleculares , Sistema Renina-Angiotensina , Renina/química , Sequência de Aminoácidos , Angiotensinogênio/metabolismo , Animais , Bovinos , Galinhas , Humanos , Camundongos , Dados de Sequência Molecular , Conformação Proteica , Ratos , Renina/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Peixe-Zebra
16.
Nat Genet ; 38(2): 234-9, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16415889

RESUMO

Cardiovascular disorders are influenced by genetic and environmental factors. The TIGR rodent expression web-based resource (TREX) contains over 2,200 microarray hybridizations, involving over 800 animals from 18 different rat strains. These strains comprise genetically diverse parental animals and a panel of chromosomal substitution strains derived by introgressing individual chromosomes from normotensive Brown Norway (BN/NHsdMcwi) rats into the background of Dahl salt sensitive (SS/JrHsdMcwi) rats. The profiles document gene-expression changes in both genders, four tissues (heart, lung, liver, kidney) and two environmental conditions (normoxia, hypoxia). This translates into almost 400 high-quality direct comparisons (not including replicates) and over 100,000 pairwise comparisons. As each individual chromosomal substitution strain represents on average less than a 5% change from the parental genome, consomic strains provide a useful mechanism to dissect complex traits and identify causative genes. We performed a variety of data-mining manipulations on the profiles and used complementary physiological data from the PhysGen resource to demonstrate how TREX can be used by the cardiovascular community for hypothesis generation.


Assuntos
Bases de Dados Genéticas , Modelos Animais de Doenças , Genômica , Cardiopatias/genética , Doenças Hematológicas/genética , Pneumopatias/genética , Animais , Perfilação da Expressão Gênica , Variação Genética , Genômica/métodos , Cardiopatias/fisiopatologia , Doenças Hematológicas/fisiopatologia , Hipóxia/induzido quimicamente , Internet , Pneumopatias/fisiopatologia , Masculino , Análise em Microsséries , Miocárdio/metabolismo , Ratos , Ratos Endogâmicos BN , Ratos Endogâmicos Dahl , Sequências Reguladoras de Ácido Nucleico/genética
17.
Physiol Genomics ; 46(11): 398-410, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24714719

RESUMO

The goal of the present study was to narrow a region of chromosome 13 to only several genes and then apply unbiased statistical approaches to identify molecular networks and biological pathways relevant to blood-pressure salt sensitivity in Dahl salt-sensitive (SS) rats. The analysis of 13 overlapping subcongenic strains identified a 1.37 Mbp region on chromosome 13 that influenced the mean arterial blood pressure by at least 25 mmHg in SS rats fed a high-salt diet. DNA sequencing and analysis filled genomic gaps and provided identification of five genes in this region, Rfwd2, Fam5b, Astn1, Pappa2, and Tnr. A cross-platform normalization of transcriptome data sets obtained from our previously published Affymetrix GeneChip dataset and newly acquired RNA-seq data from renal outer medullary tissue provided 90 observations for each gene. Two Bayesian methods were used to analyze the data: 1) a linear model analysis to assess 243 biological pathways for their likelihood to discriminate blood pressure levels across experimental groups and 2) a Bayesian graphical modeling of pathways to discover genes with potential relationships to the candidate genes in this region. As none of these five genes are known to be involved in hypertension, this unbiased approach has provided useful clues to be experimentally explored. Of these five genes, Rfwd2, the gene most strongly expressed in the renal outer medulla, was notably associated with pathways that can affect blood pressure via renal transcellular Na(+) and K(+) electrochemical gradients and tubular Na(+) transport, mitochondrial TCA cycle and cell energetics, and circadian rhythms.


Assuntos
Genoma/genética , Hipertensão/genética , Hipertensão/metabolismo , Transdução de Sinais/genética , Animais , Pressão Arterial/genética , Teorema de Bayes , Ritmo Circadiano/genética , Ciclo do Ácido Cítrico/genética , Perfilação da Expressão Gênica/métodos , Masculino , Mitocôndrias/genética , Potássio/metabolismo , Ratos , Ratos Endogâmicos Dahl , Análise de Sequência de DNA/métodos , Sódio/metabolismo , Cloreto de Sódio na Dieta/metabolismo
18.
Am J Physiol Heart Circ Physiol ; 306(3): H339-47, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24322611

RESUMO

Superoxide dismutase (SOD) enzymes, including extracellular SOD (ecSOD), are important for scavenging superoxide radicals (O2(·-)) in the vasculature. This study investigated vascular control in rats [SS-Sod(3m1Mcwi) (ecSOD(E124D))] with a missense mutation that alters a single amino acid (E124D) of ecSOD that produces a malfunctioning protein in the salt-sensitive (Dahl SS) genetic background. We hypothesized that this mutation would exacerbate endothelial dysfunction due to elevated vascular O2(·-) levels in SS, even under normal salt (NS; 0.4% NaCl) conditions. Aortas of ecSOD(E124D) rats fed standard rodent chow showed enhanced sensitivity to phenylephrine and reduced relaxation to acetylcholine (ACh) vs. SS rats. Endothelium-dependent dilation to ACh was unaffected by the mutation in small mesenteric arteries of ecSOD(E124D) rats fed NS diet, and mesenteric arteries of ecSOD(E124D) rats were protected from endothelial dysfunction during short-term (3-5 days) high-salt (HS; 4% NaCl) diet. ACh-induced dilation of mesenteric arteries of ecSOD(E124D) rats and SS rats fed NS diet was inhibited by N(G)-nitro-l-arginine methyl ester and/or by H2O2 scavenging with polyethylene glycol-catalase at higher concentrations of ACh. Total SOD activity was significantly higher in ecSOD(E124D) rats vs. SS controls fed HS diet, most likely reflecting a compensatory response to loss of a functional ecSOD isoform. These findings indicate that, contrary to its effect in the aorta, this missense mutation of ecSOD in the SS rat genome has no negative effect on vascular function in small resistance arteries, but instead protects against salt-induced endothelial dysfunction, most likely via compensatory mechanisms involving an increase in total SOD activity.


Assuntos
Artérias Mesentéricas/enzimologia , Mutação de Sentido Incorreto , Cloreto de Sódio na Dieta/toxicidade , Superóxido Dismutase/metabolismo , Acetilcolina/farmacologia , Animais , Aorta/metabolismo , Aorta/fisiopatologia , Catalase/farmacologia , Artérias Mesentéricas/efeitos dos fármacos , Artérias Mesentéricas/fisiopatologia , NG-Nitroarginina Metil Éster/farmacologia , Oxigênio/metabolismo , Fenilefrina/farmacologia , Polietilenoglicóis/farmacologia , Ratos Endogâmicos Dahl , Cloreto de Sódio na Dieta/metabolismo , Superóxido Dismutase/genética , Vasodilatação
19.
Am J Physiol Heart Circ Physiol ; 307(8): H1103-10, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25320330

RESUMO

We previously isolated a 6.1-Mb region of SS/Mcwi (Dahl salt-sensitive) rat chromosome 12 (13.4-19.5 Mb) that significantly elevated blood pressure (BP) (Δ+34 mmHg, P < 0.001) compared with the SS-12(BN) consomic control. In the present study, we examined the role of vascular dysfunction and remodeling in hypertension risk associated with the 6.1-Mb (13.4-19.5 Mb) locus on rat chromosome 12 by reducing dietary salt, which lowered BP levels so that there were no substantial differences in BP between strains. Consequently, any observed differences in the vasculature were considered BP-independent. We also reduced the candidate region from 6.1 Mb with 133 genes to 2 Mb with 23 genes by congenic mapping. Both the 2 Mb and 6.1 Mb congenic intervals were associated with hypercontractility and decreased elasticity of resistance vasculature prior to elevations of BP, suggesting that the vascular remodeling and dysfunction likely contribute to the pathogenesis of hypertension in these congenic models. Of the 23 genes within the narrowed congenic interval, 12 were differentially expressed between the resistance vasculature of the 2 Mb congenic and SS-12(BN) consomic strains. Among these, Grifin was consistently upregulated 2.7 ± 0.6-fold (P < 0.05) and 2.0 ± 0.3-fold (P < 0.01), and Chst12 was consistently downregulated -2.8 ± 0.3-fold (P < 0.01) and -4.4 ± 0.4-fold (P < 0.00001) in the 2 Mb congenic compared with SS-12(BN) consomic under normotensive and hypertensive conditions, respectively. A syntenic region on human chromosome 7 has also been associated with BP regulation, suggesting that identification of the genetic mechanism(s) underlying cardiovascular phenotypes in this congenic strain will likely be translated to a better understanding of human hypertension.


Assuntos
Pressão Sanguínea/genética , Loci Gênicos , Hipertensão/genética , Artérias Mesentéricas/fisiopatologia , Resistência Vascular , Animais , Cromossomos/genética , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Galectinas/genética , Galectinas/metabolismo , Hipertensão/etiologia , Hipertensão/fisiopatologia , Artérias Mesentéricas/efeitos dos fármacos , Artérias Mesentéricas/metabolismo , Ratos , Ratos Endogâmicos Dahl , Cloreto de Sódio na Dieta , Sulfotransferases/genética , Sulfotransferases/metabolismo
20.
FASEB J ; 27(3): 930-41, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23195032

RESUMO

Germline transgenesis is an important procedure for functional investigation of biological pathways, as well as for animal biotechnology. We have established a simple, nonviral protocol in three important biomedical model organisms frequently used in physiological studies. The protocol is based on the hyperactive Sleeping Beauty transposon system, SB100X, which reproducibly promoted generation of transgenic founders at frequencies of 50-64, 14-72, and 15% in mice, rats, and rabbits, respectively. The SB100X-mediated transgene integrations are less prone to genetic mosaicism and gene silencing as compared to either the classical pronuclear injection or to lentivirus-mediated transgenesis. The method was successfully applied to a variety of transgenes and animal models, and can be used to generate founders with single-copy integrations. The transposon vector also allows the generation of transgenic lines with tissue-specific expression patterns specified by promoter elements of choice, exemplified by a rat reporter strain useful for tracking serotonergic neurons. As a proof of principle, we rescued an inborn genetic defect in the fawn-hooded hypertensive rat by SB100X transgenesis. A side-by-side comparison of the SB100X- and piggyBac-based protocols revealed that the two systems are complementary, offering new opportunities in genome manipulation.


Assuntos
Elementos de DNA Transponíveis/genética , Inativação Gênica , Técnicas de Transferência de Genes , Vetores Genéticos , Mosaicismo , Transgenes , Animais , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Especificidade de Órgãos/genética , Coelhos , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA