Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Langmuir ; 36(36): 10885-10891, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32881533

RESUMO

The manipulation of ferrofluidic droplets by magnetic fields is a popular technique for controlling fluid transport in open microfluidic systems. We examine the effect of gravity and shear flow external forces on the adhesion properties of sessile ferrofluidic droplets in the presence of a uniform magnetic field. The magnetic field was found to enhance the critical Bond number at which sliding begins on a tilting substrate but suppress the critical Weber number at which sliding begins in a moderate Reynolds number channel flow. The divergent adhesion trends are explained in terms of the shape deformation induced in the ferrofluidic droplet, the substrate wettability, and the apparent contact angle variation induced by the droplet deformation.

2.
Phys Rev Lett ; 116(12): 124501, 2016 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-27058080

RESUMO

Surface coatings and patterning technologies are essential for various physicochemical applications. In this Letter, we describe key parameters to achieve uniform particle coatings from binary solutions. First, multiple sequential Marangoni flows, set by solute and surfactant simultaneously, prevent nonuniform particle distributions and continuously mix suspended materials during droplet evaporation. Second, we show the importance of particle-surface interactions that can be established by surface-adsorbed macromolecules. To achieve a uniform deposit in a binary mixture, a small concentration of surfactant and surface-adsorbed polymer (0.05 wt% each) is sufficient, which offers a new physicochemical avenue for control of coatings.

3.
Phys Rev Lett ; 114(16): 168301, 2015 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-25955076

RESUMO

Rough or patterned surfaces infused with a lubricating liquid display many of the same useful properties as conventional gas-cushioned superhydrophobic surfaces. However, liquid-infused surfaces exhibit a new failure mode: the infused liquid film may drain due to an external shear flow, causing the surface to lose its advantageous properties. We examine shear-driven drainage of liquid-infused surfaces with the goal of understanding and thereby mitigating this failure mode. On patterned surfaces exposed to a known shear stress, we find that a finite length of the surface remains wetted indefinitely, despite the fact that no physical barriers prevent drainage. We develop an analytical model to explain our experimental results, and find that the steady-state retention results from the ability of patterned surfaces to wick wetting liquids, and is thus analogous to capillary rise. We establish the geometric surface parameters governing fluid retention and show how these parameters can describe even random substrate patterns.


Assuntos
Lubrificantes/química , Modelos Químicos , Interações Hidrofóbicas e Hidrofílicas , Resistência ao Cisalhamento , Propriedades de Superfície , Molhabilidade
4.
Soft Matter ; 11(25): 5023-9, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26014378

RESUMO

Liquid-infused surfaces display advantageous properties that are normally associated with conventional gas-cushioned superhydrophobic surfaces. However, the surfaces can lose their novel properties if the infused liquid drains from the surface. We explore how drainage due to gravity or due to an external flow can be prevented through the use of chemical patterning. A small area of the overall surface is chemically treated to be preferentially wetted by the external fluid rather than the infused liquid. These sacrificial regions disrupt the continuity of the infused liquid, thereby preventing the liquid from draining from the texture. If the regions are patterned with the correct periodicity, drainage can be prevented entirely. The chemical patterns are created using spray-coating or deep-UV exposure, two facile techniques that are scalable to generate large-scale failure-resistant surfaces.

5.
Lab Chip ; 15(4): 1110-5, 2015 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-25537266

RESUMO

We study pressure and flow-rate fluctuations in microchannels, where the flow rate is supplied by a syringe pump. We demonstrate that the pressure fluctuations are induced by the flow-rate fluctuations coming from mechanical oscillations of the pump motor. Also, we provide a mathematical model of the effect of the frequency of the pump on the normalized amplitude of pressure fluctuations and introduce a dimensionless parameter incorporating pump frequency, channel geometry and mechanical properties that can be used to predict the performance of different microfluidic device configurations. The normalized amplitude of pressure fluctuations decreases as the frequency of the pump increases and the elasticity of the channel material decreases. The mathematical model is verified experimentally over a range of typical operating conditions and possible applications are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA