Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomacromolecules ; 24(4): 1555-1562, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-36786736

RESUMO

Numerous collagen mimetic peptides (CMPs) have been engineered using proline derivatives substituted at their C(3) and/or C(4) position in order to stabilize or functionalize collagen triple-helix mimics. However, no example has been reported so far with C(5) substitutions. Here, we introduce a fluorinated CMP incorporating trifluoromethyl groups at the C(5) position of pseudoproline residues. In tripeptide models, our CD, NMR, and molecular dynamics (MD) studies have shown that, when properly arranged, these residues meet the structural requirements for a triple-helix assembly. Two host-guest CMPs were synthesized and analyzed by CD spectroscopy. The NMR analysis in solution of the most stable confirmed the presence of structured homotrimers that we interpret as triple helices. MD calculations showed that the triple-helix model remained stable throughout the simulation with all six trifluoromethyl groups pointing outward from the triple helix. Pseudoprolines substituted at the C(5) positions appeared as valuable tools for the design of new fluorinated collagen mimetic peptides.


Assuntos
Colágeno , Peptídeos , Peptídeos/química , Colágeno/química , Prolina
2.
Proc Natl Acad Sci U S A ; 114(34): 9080-9085, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28784767

RESUMO

Determining the functional relationship between Tau phosphorylation and aggregation has proven a challenge owing to the multiple potential phosphorylation sites and their clustering in the Tau sequence. We use here in vitro kinase assays combined with NMR spectroscopy as an analytical tool to generate well-characterized phosphorylated Tau samples and show that the combined phosphorylation at the Ser202/Thr205/Ser208 sites, together with absence of phosphorylation at the Ser262 site, yields a Tau sample that readily forms fibers, as observed by thioflavin T fluorescence and electron microscopy. On the basis of conformational analysis of synthetic phosphorylated peptides, we show that aggregation of the samples correlates with destabilization of the turn-like structure defined by phosphorylation of Ser202/Thr205.


Assuntos
Agregação Patológica de Proteínas , Serina/metabolismo , Treonina/metabolismo , Proteínas tau/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Humanos , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/ultraestrutura , Fosforilação , Domínios Proteicos , Ratos Sprague-Dawley , Serina/química , Serina/genética , Treonina/química , Treonina/genética , Proteínas tau/química , Proteínas tau/genética
3.
Ann Pharm Fr ; 77(6): 488-495, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31563266

RESUMO

Nanodiamonds (NDs) are emerging delivery systems with biomedical applications and interesting perspectives in oncology. Their use has been proposed to assist the internalization of anticancer drugs and to decrease administered drug doses. The pro-apoptotic peptide ERα17p, which is issued from the hinge/N-terminus parts of the AF2 region of the human estrogen receptor α (ERα), is active at a concentration of 10µM on breast cancer cells and particularly on those cancer cells that are ERα-positive. We have synthesized ND@ERα17p conjugates by physisorption of the cationic peptide ERα17p on the surface of anionic NDs. Resulting ND@ERα17p suspensions were characterized by far-UV electronic circular dichroism (ECD), dynamic light scattering (DLS) and zetametry. We then tested the anti-proliferative action of ND@ERα17p on ERα-positive MCF-7 breast carcinoma cells. ND@ERα17p allowed a decrease of the active concentration to 0.1nM (ND@ERα17p), revealing unambiguously that NDs could be used to improve the anti-proliferative action of this peptide. This preliminary study proposes a novel approach for enhancing the apoptotic action displayed by ERα17p, in the context of breast cancer.


Assuntos
Adenocarcinoma/patologia , Neoplasias da Mama/patologia , Nanoconjugados , Nanodiamantes , Fragmentos de Peptídeos/farmacologia , Sequência de Aminoácidos , Apoptose/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Dicroísmo Circular , Portadores de Fármacos , Desenho de Fármacos , Difusão Dinâmica da Luz , Receptor alfa de Estrogênio/química , Feminino , Humanos , Células MCF-7 , Microscopia Eletrônica , Fragmentos de Peptídeos/química , Eletricidade Estática
4.
Int J Mol Sci ; 19(12)2018 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-30513833

RESUMO

Breast cancer is the most prevalent cancer found in women living in developed countries. Endocrine therapy is the mainstay of treatment for hormone-responsive breast tumors (about 70% of all breast cancers) and implies the use of selective estrogen receptor modulators and aromatase inhibitors. In contrast, triple-negative breast cancer (TNBC), a highly heterogeneous disease that may account for up to 24% of all newly diagnosed cases, is hormone-independent and characterized by a poor prognosis. As drug resistance is common in all breast cancer subtypes despite the different treatment modalities, novel therapies targeting signaling transduction pathways involved in the processes of breast carcinogenesis, tumor promotion and metastasis have been subject to accurate consideration. G protein-coupled receptors (GPCRs) are the largest family of cell-surface receptors involved in the development and progression of many tumors including breast cancer. Here we discuss data regarding GPCR-mediated signaling, pharmacological properties and biological outputs toward breast cancer tumorigenesis and metastasis. Furthermore, we address several drugs that have shown an unexpected opportunity to interfere with GPCR-based breast tumorigenic signals.


Assuntos
Neoplasias da Mama/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Feminino , Humanos , Modelos Biológicos , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Transdução de Sinais
5.
J Recept Signal Transduct Res ; 37(2): 149-166, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27400858

RESUMO

Estrothiazine (ESTZ) is a weak estrogen sharing structural similarities with coumestrol. ESTZ failed to compete with [3H]17ß-estradiol ([3H]17ß-E2) for binding to the estrogen receptor α (ERα), questioning its ability to interact with the receptor. However, detection by atomic force spectroscopy (AFS) of an ESTZ-induced ERα dimerization has eliminated any remaining doubts. The effect of the compound on the proliferation of ERα-positive and negative breast cancer cells confirmed the requirement of the receptor. The efficiency of ESTZ in MCF-7 cells was weak without any potency to modify the proliferation profile of estradiol and coumestrol. Growth enhancement was associated with a proteasomal degradation of ERα without substantial recruitment of LxxLL coactivators. This may be related to an unusual delay between the acquisition by the receptor of an ERE-binding capacity and the subsequent estrogen-dependent transcription. A complementary ability to enhance TPA-induced AP-1 transcription was observed, even at concentrations insufficient to activate the ERα, suggesting a partly independent mechanism. ESTZ also rapidly and transiently activated ERK1/2 likely through membrane estrogenic pathways provoking a reorganization of the actin network. Finally, the systematic absence of biological responses with an ESTZ derivative unable to induce ERα dimerization stresses the importance of this step in the action of the compound, as reported for conventional estrogens. In view of the existence of many other ERα modulators (endocrine disruptors such as, for example, pesticides, environmental contaminants or phytoestrogens) with extremely weak or similar apparent lack of binding ability, our work may appear as pilot investigation for assessing their mechanism of action.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Receptor alfa de Estrogênio/metabolismo , Tiazinas/administração & dosagem , Transcrição Gênica , Sítios de Ligação , Neoplasias da Mama/genética , Dimerização , Estradiol/metabolismo , Receptor alfa de Estrogênio/genética , Feminino , Humanos , Células MCF-7 , Fitoestrógenos , Ligação Proteica/genética , Espectrofotometria Atômica , Tiazinas/química , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo
6.
Biochemistry ; 55(38): 5366-76, 2016 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-27641460

RESUMO

The immunophilin FKBP52 interacts with nuclear steroid hormone receptors. Studying the crystal structure of human estrogen receptor α (hERα) and using nuclear magnetic resonance, we show here that the short V(364)PGF(367) sequence, which is located within its ligand-binding domain and adopts a type II ß-turn conformation in the protein, binds the peptidyl-prolyl isomerase (PPIase or rotamase) FK1 domain of FKBP52. Interestingly, this turn motif displays strong similarities with the FKBP52 FK1 domain-binding moiety of macrolide immunomodulators such as rapamycin and GPI-1046, an immunophilin ligand with neuroprotective characteristics. An increase in the hydrophobicity of the residue preceding the proline and cyclization of the VPGF peptide strengthen its recognition by the FK1 domain of FKBP52. Replacement of the Pro residue with a dimethylproline also enhances this interaction. Our study not only contributes to a better understanding of how the interaction between the FK1 domain of FKBP52 and steroid hormone receptors most likely works but also opens new avenues for the synthesis of FKBP52 FK1 peptide ligands appropriate for the control of hormone-dependent physiological mechanisms or of the functioning of the Tau protein. Indeed, it has been shown that FKBP52 is involved in the intraneuronal dynamics of the Tau protein.


Assuntos
Peptidilprolil Isomerase/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Esteroides/metabolismo , Sítios de Ligação , Domínio Catalítico , Ligantes , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Termodinâmica
7.
Biochem J ; 472(1): 97-109, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26371374

RESUMO

The ERα (oestrogen receptor α)-derived peptide ERα17p activates rapid signalling events in breast carcinoma cells under steroid-deprived conditions. In the present study, we investigated its effects in ELT3 leiomyoma cells under similar conditions. We show that it activates ERK1/2 (extracellular-signal-regulated kinase 1/2), the Gαi protein, the trans-activation of EGFR (epidermal growth factor receptor) and, finally, cell proliferation. It is partially internalized in cells and induces membrane translocation of ß-arrestins. The activation of ERK1/2 is abolished by the GPR30 (G-protein-coupled receptor 30) antagonist G15 and GPR30 siRNA. When ERα is down-regulated by prolonged treatment with E2 (oestradiol) or specific ERα siRNA, the peptide response is blunted. Thus the simultaneous presence of GPR30 and ERα is required for the action of ERα17p. In addition, its PLM sequence, which interferes with the formation of the ERα-calmodulin complex, appears to be requisite for the phosphorylation of ERK1/2 and cell proliferation. Hence ERα17p is, to our knowledge, the first known peptide targeting ERα-GPR30 membrane cross-talk and the subsequent receptor-mediated biological effects.


Assuntos
Receptor alfa de Estrogênio/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Oligopeptídeos/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Sequência de Aminoácidos , Animais , Arrestinas/metabolismo , Western Blotting , Calmodulina/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Receptores ErbB/metabolismo , Estradiol/farmacologia , Receptor alfa de Estrogênio/química , Receptor alfa de Estrogênio/genética , Dados de Sequência Molecular , Oligopeptídeos/química , Oligopeptídeos/farmacocinética , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Interferência de RNA , Ratos , Receptor Cross-Talk/efeitos dos fármacos , Receptores Acoplados a Proteínas G/genética , beta-Arrestinas
8.
J Pept Sci ; 21(2): 95-104, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25530026

RESUMO

We have synthesized a 17-mer peptide (ERα17p) that is issued from the hinge region of the estrogen receptor α and which activates the proliferation of breast carcinoma cells in steroid-deprived conditions. In the present paper, we show that at a concentration of ~50 µM, it rapidly forms amyloid-like fibrils with the assistance of electrostatic interactions and that at higher concentrations, it spontaneously forms a hydrogel. By using biophysical, spectral and rheological techniques, we have explored the structural, biophysical and mechanical characteristics of ERα17p with respect to fibril formation and gelation.


Assuntos
Receptor alfa de Estrogênio/química , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Amiloide/química , Amiloide/metabolismo , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Hidrogel de Polietilenoglicol-Dimetacrilato/metabolismo , Fragmentos de Peptídeos/síntese química , Fragmentos de Peptídeos/farmacologia , Estrutura Secundária de Proteína , Propriedades de Superfície
9.
Angew Chem Int Ed Engl ; 54(23): 6819-23, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25881502

RESUMO

Post mortem biochemical staging of Alzheimer's disease is currently based on immunochemical analysis of brain slices with the AT8 antibody. The epitope of AT8 is described around the pSer202/pThr205 region of the hyperphosphorylated form of the neuronal protein tau. In this study, NMR spectroscopy was used to precisely map the AT8 epitope on phosphorylated tau, and derive its defining structural features by a combination of NMR analyses and molecular dynamics. A particular turn conformation is stabilized by a hydrogen bond of the phosphorylated Thr205 residue to the amide proton of Gly207, and is further stabilized by the two Arg residues opposing the pSer202/pThr205.


Assuntos
Doença de Alzheimer/metabolismo , Anticorpos Monoclonais/imunologia , Mapeamento de Epitopos , Epitopos/química , Epitopos/imunologia , Proteínas tau/química , Proteínas tau/imunologia , Doença de Alzheimer/imunologia , Humanos , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Fosforilação , Proteínas tau/metabolismo
10.
J Pept Sci ; 19(7): 423-32, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23712909

RESUMO

A model octapeptide segment derived from vasoactive intestinal peptide (VIP) was utilised to investigate the effect of several conventional cyclisation methods on the α-helical conformation in short peptide fragments. Three of the classical macrocyclisation techniques (i.e. lactamisation, ring-closing metathesis and Huisgen cycloaddition) were applied, and the conformations of the resulting cyclic peptides, as well as their linear precursors, were compared by CD analysis. The visibly higher folding propensity of the triazole-tethered peptide after azide-alkyne CuAAC macrocyclisation illustrates that the secondary structure of a short peptide fragment can differ significantly depending on the chemical strategy used to covalently cross-link side chain residues in a 'helical' fragment.


Assuntos
Dicroísmo Circular , Peptídeo Intestinal Vasoativo/química , Ciclização , Estabilidade Proteica , Estrutura Secundária de Proteína , Peptídeo Intestinal Vasoativo/síntese química
11.
Steroids ; 200: 109311, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37734514

RESUMO

Chronic pain is a worldwide refractory health disease that causes major financial and emotional burdens and that is devastating for individuals and society. One primary source of pain is inflammation. Current treatments for inflammatory pain are weakly effective, although they usually replace analgesics, such as opioids and non-steroidal anti-inflammatory drugs, which display serious side effects. Emerging evidence indicates that the membrane G protein-coupled estrogen receptor (GPER) may play an important role in the regulation of inflammation and pain. Herein, we focus on the consequences of pharmacological and genetic GPER modulation in different animal models of inflammatory pain. We also provide a brief overview of the putative mechanisms including the direct action of GPER on pain transmission and inflammation.


Assuntos
Estrogênios , Receptores de Estrogênio , Animais , Humanos , Receptores de Estrogênio/genética , Receptores Acoplados a Proteínas G/genética , Inflamação , Dor
12.
Cells ; 12(4)2023 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-36831322

RESUMO

The estrogen receptor α (ERα) corresponds to a large platform in charge of the recruitment of a panel of molecules, including steroids and related heterocyclic derivatives, oligonucleotides, peptides and proteins. Its 295-311 region is particularly targeted by post-translational modifications, suggesting that it could be crucial for the control of transcription. In addition to anionic phospholipids, the ERα 295-311 fragment interacts with Ca2+-calmodulin, the heat shock protein 70 (Hsp70), ERα and possibly importins. More recently, we have demonstrated that it is prone to interacting with the G-protein-coupled estrogen receptor (GPER). In light of these observations, the pharmacological profile of the corresponding peptide, namely ERα17p, has been explored in breast cancer cells. Remarkably, it exerts apoptosis through GPER and induces a significant decrease (more than 50%) of the size of triple-negative breast tumor xenografts in mice. Herein, we highlight not only the promising therapeutic perspectives in the use of the first peptidic GPER modulator ERα17p, but also the opportunity to modulate GPER for clinical purposes.


Assuntos
Receptor alfa de Estrogênio , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Receptor alfa de Estrogênio/metabolismo , Agonismo Inverso de Drogas , Estrogênios , Receptores Acoplados a Proteínas G/metabolismo , Peptídeos
13.
Sci Rep ; 13(1): 1326, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36693877

RESUMO

The synthetic peptide ERα17p (sequence: PLMIKRSKKNSLALSLT), which corresponds to the 295-311 region of the human estrogen receptor α (ERα), induces apoptosis in breast cancer cells. In mice and at low doses, it promotes not only the decrease of the size of xenografted triple-negative human breast tumors, but also anti-inflammatory and anti-nociceptive effects. Recently, we have shown that these effects were due to its interaction with the seven-transmembrane G protein-coupled estrogen receptor GPER. Following modeling studies, the C-terminus of this peptide (sequence: NSLALSLT) remains compacted at the entrance of the GPER ligand-binding pocket, whereas its N-terminus (sequence: PLMI) engulfs in the depth of the same pocket. Thus, we have hypothesized that the PLMI motif could support the pharmacological actions of ERα17p. Here, we show that the PLMI peptide is, indeed, responsible for the GPER-dependent antiproliferative and anti-nociceptive effects of ERα17p. By using different biophysical approaches, we demonstrate that the NSLALSLT part of ERα17p is responsible for aggregation. Overall, the tetrapeptide PLMI, which supports the action of the parent peptide ERα17p, should be considered as a hit for the synthesis of new GPER modulators with dual antiproliferative and anti-nociceptive actions. This study highlights also the interest to modulate GPER for the control of pain.


Assuntos
Receptor alfa de Estrogênio , Neoplasias de Mama Triplo Negativas , Animais , Humanos , Camundongos , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Estrogênios , Peptídeos , Receptores Acoplados a Proteínas G , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo
14.
Biochem Biophys Res Commun ; 419(2): 356-61, 2012 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-22342729

RESUMO

The transcriptional activity of human estrogen receptor ERα is modulated by a number of coregulatory proteins among which calmodulin (CaM). Segment 295-311 in the hinge region of ERα has previously been proposed to be the CaM binding site. In this work, we investigate the molecular mechanism of the interaction of CaM with peptides derived from the hinge region of ERα, using a biophysical approach combining isothermal titration calorimetry, fluorescence, CD and NMR. The ERα17p peptide, corresponding to the previously identified 295-311 region of ERα, recruits mainly the C-terminal domain of Ca(4)CaM, as shown by NMR spectroscopy. In contrast, a longer peptide, ERα25p, extended on the N-terminal side (residues 287-311) interacts with both N- and C-terminal domains of Ca(4)CaM. These results lead to a new delineation of the CaM binding site, encompassing residues 287-294. In particular, fluorescence spectroscopy reveals that the conserved W(292) residue is engaged within hydrophobic pockets on Ca(4)CaM. ITC results show that ERα25p binds Ca(4)CaM with an atypical 2:1 stoichiometry and a dissociation constant in the micromolar range. Based on the NMR titration of Ca(4)CaM by ERα25p showing a biphasic behavior for several residues, we suggest that concerted conformational changes of CaM domains may be required to accommodate the binding of a second peptide. CD spectra indicate that ERα25p partially folds into an α-helix upon binding to Ca(4)CaM. Hence, ERα25p is a new CaM-binding ligand that could be appropriate for the synthesis of derivatives able to control ER-dependent transcription, particularly in the context of hormone-dependent breast tumors.


Assuntos
Calmodulina/química , Receptor alfa de Estrogênio/química , Fenômenos Biofísicos , Humanos , Ressonância Magnética Nuclear Biomolecular , Fragmentos de Peptídeos/química , Ligação Proteica , Mapeamento de Interação de Proteínas
15.
J Cell Biochem ; 112(12): 3786-96, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21826705

RESUMO

Recently, our knowledge on estrogen receptor alpha (ERα) functions and fate has progressed: ERα enters in repeated transcription-modulating cycles (nucleus/cytoplasm/membrane trafficking processes and proteasomal degradation) that are governed by specific protein-protein interactions. Receptor fragments, especially those resulting from the proteolysis of its ligand binding domain, as well as corresponding synthetic peptides, have been studied with respect to their estrogenic/antiestrogenic potency. A peptide, corresponding to the human ERα P(295) -T(311) sequence (ERα17p) has been shown to alter breast cancer cell fate, triggering proliferation, or apoptosis. The aim of this work was to explore the effect of ERα17p on breast cancer cell migration and actin cytoskeleton dynamics and further analyze the mechanism of its membrane action. We show that ERα17p increases (MCF-7 and SK-BR-3 cells) or decreases (T47D and MDA-MB-231 cells) migration of breast cancer cells, in an ERα-independent manner, by mechanism(s) depending on Rho/ROCK and PI3K/Akt signaling pathways. Moreover, the peptide enhances the association of both estrogens and androgens to membranes and modifies cell migration, induced by E(2) -BSA. Additionally, initial evidence of a possible agonistic action of the peptide on GPR30 is also provided. ERα17p can be considered as a cell migration-modulator and could therefore constitute a therapeutic challenge, even in anti-estrogen-resistant tumors.


Assuntos
Actinas/metabolismo , Neoplasias da Mama/patologia , Citoesqueleto/metabolismo , Receptor alfa de Estrogênio/fisiologia , Metástase Neoplásica/patologia , Biopolímeros/metabolismo , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Receptor alfa de Estrogênio/química , Receptor alfa de Estrogênio/metabolismo , Feminino , Humanos , Ligação Proteica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais
16.
Front Endocrinol (Lausanne) ; 12: 578250, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815268

RESUMO

Persistent inflammation and persistent pain are major medical, social and economic burdens. As such, related pharmacotherapy needs to be continuously improved. The peptide ERα17p, which originates from a part of the hinge region/AF2 domain of the human estrogen receptor α (ERα), exerts anti-proliferative effects in breast cancer cells through a mechanism involving the hepta-transmembrane G protein-coupled estrogen receptor (GPER). It is able to decrease the size of xenografted human breast tumors, in mice. As GPER has been reported to participate in pain and inflammation, we were interested in exploring the potential of ERα17p in this respect. We observed that the peptide promoted anti-hyperalgesic effects from 2.5 mg/kg in a chronic mice model of paw inflammation induced by the pro-inflammatory complete Freund's adjuvant (CFA). This action was abrogated by the specific GPER antagonist G-15, leading to the conclusion that a GPER-dependent mechanism was involved. A systemic administration of a Cy5-labeled version of the peptide allowed its detection in both, the spinal cord and brain. However, ERα17p-induced anti-hyperalgesia was detected at the supraspinal level, exclusively. In the second part of the study, we have assessed the anti-inflammatory action of ERα17p in mice using a carrageenan-evoked hind-paw inflammation model. A systemic administration of ERα17p at a dose of 2.5 mg/kg was responsible for reduced paw swelling. Overall, our work strongly suggests that GPER inverse agonists, including ERα17p, could be used to control hyperalgesia and inflammation.


Assuntos
Receptor alfa de Estrogênio/química , Fragmentos de Peptídeos/farmacologia , Receptores de Estrogênio/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Anestésicos/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Antineoplásicos/farmacologia , Artrite Experimental/induzido quimicamente , Artrite Experimental/genética , Artrite Experimental/metabolismo , Artrite Experimental/patologia , Agonismo Inverso de Drogas , Feminino , Adjuvante de Freund , Hiperalgesia/tratamento farmacológico , Hiperalgesia/genética , Hiperalgesia/metabolismo , Hiperalgesia/patologia , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/metabolismo , Masculino , Camundongos , Receptores Acoplados a Proteínas G/agonistas , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
17.
Artigo em Inglês | MEDLINE | ID: mdl-32849301

RESUMO

Estrogens exert a panel of biological activities mainly through the estrogen receptors α and ß, which belong to the nuclear receptor superfamily. Diverse studies have shown that the G protein-coupled estrogen receptor 1 (GPER, previously known as GPR30) also mediates the multifaceted effects of estrogens in numerous pathophysiological events, including neurodegenerative, immune, metabolic, and cardiovascular disorders and the progression of different types of cancer. In particular, GPER is implicated in hormone-sensitive tumors, albeit diverse issues remain to be deeply investigated. As such, this receptor may represent an appealing target for therapeutics in different diseases. The yet unavailable complete GPER crystallographic structure, and its relatively low sequence similarity with the other members of the G protein-coupled receptor (GPCR) family, hamper the possibility to discover compounds able to modulate GPER activity. Consequently, a reliable molecular model of this receptor is required for the design of suitable ligands. To date, convergent approaches involving structure-based drug design and virtual ligand screening have led to the identification of several GPER selective ligands, thus providing important information regarding its mode of action and function. In this survey, we summarize results obtained through computer-aided techniques devoted to the assessment of GPER ligands toward their usefulness in innovative treatments of different diseases.


Assuntos
Biologia Computacional/métodos , Descoberta de Drogas/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , Preparações Farmacêuticas/administração & dosagem , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Desenho de Fármacos , Humanos , Ligantes , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais
18.
J Med Chem ; 63(18): 10330-10338, 2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32866001

RESUMO

The protein FKBP52 is a steroid hormone receptor coactivator likely involved in neurodegenerative disease. A series of small, water-soluble, bioinspired, pseudopeptidic fluorescent ligands for the FK1 domain of this protein are described. The design is such that engulfing of the ligand in the pocket of this domain is accompanied by hydrogen-bonding of the dansyl chromophore which functions as both an integral part of the ligand and a fluorescent reporter. Binding is concomitant with a significant wavelength shift and an enhancement of the ligand fluorescence signal. Excitation of FK1 domain native tryptophan residues in the presence of bound ligand results in Förster resonance energy transfer. Variation of key ligand residues within the short sequence was undertaken, and the interaction of the resulting library with the protein was measured by techniques including isothermal calorimetry analysis, fluorescence, and FRET quenching, and a range of Kd values were determined. Cocrystallization of a protein ligand complex at 2.30 Å resolution provided detailed information at the atomic scale, while also providing insight into native substrate binding.


Assuntos
Corantes Fluorescentes/metabolismo , Oligopeptídeos/metabolismo , Proteínas de Ligação a Tacrolimo/metabolismo , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/síntese química , Humanos , Ligantes , Oligopeptídeos/síntese química , Ligação Proteica , Domínios Proteicos , Proteínas de Ligação a Tacrolimo/química
19.
Cells ; 9(2)2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-32075246

RESUMO

The peptide ERα17p, which corresponds to the 295-311 fragment of the hinge/AF2 domains of the human estrogen receptor α (ERα), exerts apoptosis in breast cancer cells through a mechanism involving the G protein-coupled estrogen-dependent receptor GPER. Besides this receptor-mediated mechanism, we have detected a direct interaction (Kd value in the micromolar range) of this peptide with lipid vesicles mimicking the plasma membrane of eukaryotes. The reversible and not reversible pools of interacting peptide may correspond to soluble and aggregated membrane-interacting peptide populations, respectively. By using circular dichroism (CD) spectroscopy, we have shown that the interaction of the peptide with this membrane model was associated with its folding into ß sheet. A slight leakage of the 5(6)-fluorescein was also observed, indicating lipid bilayer permeability. When the peptide was incubated with living breast cancer cells at the active concentration of 10 µM, aggregates were detected at the plasma membrane under the form of spheres. This insoluble pool of peptide, which seems to result from a fibrillation process, is internalized in micrometric vacuoles under the form of fibrils, without evidence of cytotoxicity, at least at the microscopic level. This study provides new information on the interaction of ERα17p with breast cancer cell membranes as well as on its mechanism of action, with respect to direct membrane effects.


Assuntos
Neoplasias da Mama/metabolismo , Fragmentos de Peptídeos/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Fenômenos Biofísicos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Receptor alfa de Estrogênio/química , Receptor alfa de Estrogênio/metabolismo , Feminino , Humanos , Bicamadas Lipídicas/química , Células MCF-7 , Microscopia Eletrônica de Transmissão , Fragmentos de Peptídeos/química , Receptores de Estrogênio/química , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Ressonância de Plasmônio de Superfície
20.
Anal Chem ; 81(21): 8986-92, 2009 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-19874059

RESUMO

Synthetic acidic proline-rich peptides devoid of basic chemical groups were studied by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF). Their ion mass spectra recorded in reflector positive ion mode have shown unusual features, i.e., absence or very weak presence of protonated peptide together with a major peak associated with fragmentation at a site that corresponds to the amide bond N-terminal to the first proline of the XPP motif. In contrast, arginine-containing analogues were stable in MALDI-TOF, whereas peptides sharing a free N-terminal amino group were moderately subject to the same fragmentation. Effects of extraction delay time suggest that this process takes place very early (nanoseconds) at the beginning of the plume expansion. The effect of the nature of the matrix on the survival yield indicates a better correlation with the initial axial velocity than with the matrix proton affinity. All the data show some strong differences with the classical in-source decay (ISD). Our results suggest the role of the available protons in the close neighborhood of the peptide during the crystallization process and the prompt fragmentation induced by collisions in the first step of ablation. Undoubtedly, our study highlights that the MALDI-TOF analysis of peptides containing proline and no basic group should be carried out with extreme caution.


Assuntos
Peptídeos/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Sequência de Aminoácidos , Cromatografia Líquida , Nanotecnologia , Peptídeos/síntese química , Peptídeos/química , Prolina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA