Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell ; 186(25): 5587-5605.e27, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38029745

RESUMO

The number one cause of human fetal death are defects in heart development. Because the human embryonic heart is inaccessible and the impacts of mutations, drugs, and environmental factors on the specialized functions of different heart compartments are not captured by in vitro models, determining the underlying causes is difficult. Here, we established a human cardioid platform that recapitulates the development of all major embryonic heart compartments, including right and left ventricles, atria, outflow tract, and atrioventricular canal. By leveraging 2D and 3D differentiation, we efficiently generated progenitor subsets with distinct first, anterior, and posterior second heart field identities. This advance enabled the reproducible generation of cardioids with compartment-specific in vivo-like gene expression profiles, morphologies, and functions. We used this platform to unravel the ontogeny of signal and contraction propagation between interacting heart chambers and dissect how mutations, teratogens, and drugs cause compartment-specific defects in the developing human heart.


Assuntos
Cardiopatias , Ventrículos do Coração , Coração , Humanos , Transcriptoma/genética , Linhagem Celular , Regulação da Expressão Gênica no Desenvolvimento , Cardiopatias/genética , Cardiopatias/metabolismo
2.
Cell ; 184(12): 3299-3317.e22, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34019794

RESUMO

Organoids capable of forming tissue-like structures have transformed our ability to model human development and disease. With the notable exception of the human heart, lineage-specific self-organizing organoids have been reported for all major organs. Here, we established self-organizing cardioids from human pluripotent stem cells that intrinsically specify, pattern, and morph into chamber-like structures containing a cavity. Cardioid complexity can be controlled by signaling that instructs the separation of cardiomyocyte and endothelial layers and by directing epicardial spreading, inward migration, and differentiation. We find that cavity morphogenesis is governed by a mesodermal WNT-BMP signaling axis and requires its target HAND1, a transcription factor linked to developmental heart chamber defects. Upon cryoinjury, cardioids initiated a cell-type-dependent accumulation of extracellular matrix, an early hallmark of both regeneration and heart disease. Thus, human cardioids represent a powerful platform to mechanistically dissect self-organization, congenital heart defects and serve as a foundation for future translational research.


Assuntos
Coração/embriologia , Organogênese , Organoides/embriologia , Ativinas/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Cálcio/metabolismo , Linhagem Celular , Linhagem da Célula , Galinhas , Células Endoteliais/citologia , Proteínas da Matriz Extracelular/metabolismo , Feminino , Fibroblastos/citologia , Proteína Homeobox Nkx-2.5/metabolismo , Humanos , Masculino , Mesoderma/embriologia , Modelos Biológicos , Miocárdio/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas Wnt/metabolismo
3.
Development ; 148(16)2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34423833

RESUMO

Cardiac congenital disabilities are the most common organ malformations, but we still do not understand how they arise in the human embryo. Moreover, although cardiovascular disease is the most common cause of death globally, the development of new therapies is lagging compared with other fields. One major bottleneck hindering progress is the lack of self-organizing human cardiac models that recapitulate key aspects of human heart development, physiology and disease. Current in vitro cardiac three-dimensional systems are either engineered constructs or spherical aggregates of cardiomyocytes and other cell types. Although tissue engineering enables the modeling of some electro-mechanical properties, it falls short of mimicking heart development, morphogenetic defects and many clinically relevant aspects of cardiomyopathies. Here, we review different approaches and recent efforts to overcome these challenges in the field using a new generation of self-organizing embryonic and cardiac organoids.


Assuntos
Coração/embriologia , Modelos Cardiovasculares , Miócitos Cardíacos/metabolismo , Organogênese/fisiologia , Organoides/embriologia , Engenharia Tecidual/métodos , Animais , Doenças Cardiovasculares , Técnicas de Cocultura/métodos , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo
4.
Front Zool ; 11: 44, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25009575

RESUMO

INTRODUCTION: Nematostella vectensis, a member of the cnidarian class Anthozoa, has been established as a promising model system in developmental biology, but while information about the genetic regulation of embryonic development is rapidly increasing, little is known about the cellular organization of the various cell types in the adult. Here, we studied the anatomy and development of the muscular system of N. vectensis to obtain further insights into the evolution of muscle cells. RESULTS: The muscular system of N. vectensis is comprised of five distinct muscle groups, which are differentiated into a tentacle and a body column system. Both systems house longitudinal as well as circular portions. With the exception of the ectodermal tentacle longitudinal muscle, all muscle groups are of endodermal origin. The shape and epithelial organization of muscle cells vary considerably between different muscle groups. Ring muscle cells are formed as epitheliomuscular cells in which the myofilaments are housed in the basal part of the cell, while the apical part is connected to neighboring cells by apical cell-cell junctions. In the longitudinal muscles of the column, the muscular part at the basal side is connected to the apical part by a long and narrow cytoplasmic bridge. The organization of these cells, however, remains epitheliomuscular. A third type of muscle cell is represented in the longitudinal muscle of the tentacle. Using transgenic animals we show that the apical cell-cell junctions are lost during differentiation, resulting in a detachment of the muscle cells to a basiepithelial position. These muscle cells are still located within the epithelium and outside of the basal matrix, therefore constituting basiepithelial myocytes. We demonstrate that all muscle cells, including the longitudinal basiepithelial muscle cells of the tentacle, initially differentiate from regular epithelial cells before they alter their epithelial organisation. CONCLUSIONS: A wide range of different muscle cell morphologies can already be found in a single animal. This suggests how a transition from an epithelially organized muscle system to a mesenchymal could have occurred. Our study on N. vectensis provides new insights into the organisation of a muscle system in a non-bilaterian organism.

5.
Nat Commun ; 14(1): 1747, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36990990

RESUMO

Animals are typically composed of hundreds of different cell types, yet mechanisms underlying the emergence of new cell types remain unclear. Here we address the origin and diversification of muscle cells in the non-bilaterian, diploblastic sea anemone Nematostella vectensis. We discern two fast and two slow-contracting muscle cell populations, which differ by extensive sets of paralogous structural protein genes. We find that the regulatory gene set of the slow cnidarian muscles is remarkably similar to the bilaterian cardiac muscle, while the two fast muscles differ substantially from each other in terms of transcription factor profiles, though driving the same set of structural protein genes and having similar physiological characteristics. We show that anthozoan-specific paralogs of Paraxis/Twist/Hand-related bHLH transcription factors are involved in the formation of fast and slow muscles. Our data suggest that the subsequent recruitment of an entire effector gene set from the inner cell layer into the neural ectoderm contributes to the evolution of a novel muscle cell type. Thus, we conclude that extensive transcription factor gene duplications and co-option of effector modules act as an evolutionary mechanism underlying cell type diversification during metazoan evolution.


Assuntos
Duplicação Gênica , Anêmonas-do-Mar , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Anêmonas-do-Mar/genética , Regulação da Expressão Gênica , Células Musculares , Filogenia
6.
Cell Stem Cell ; 28(2): 180-181, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33545075

RESUMO

Current in vitro systems are powerful tools for studying early heart specification but lack the ability to model morphological events. Reporting in this issue of Cell Stem Cell, Rossi et al. (2021) present a patterned embryonic organoid model (gastruloid) that mimics aspects of early cardiogenesis.


Assuntos
Coração , Organogênese , Organoides
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA