RESUMO
OBJECTIVES: Parametric mapping constitutes a novel cardiac magnetic resonance (CMR) technique enabling quantitative assessment of pathologic alterations of left ventricular (LV) myocardium. This study aimed to investigate the clinical utility of mapping techniques with and without contrast agent compared to standard CMR to predict adverse LV remodeling following acute myocardial infarction (AMI). MATERIALS AND METHODS: A post hoc analysis was performed on sixty-four consecutively enrolled patients (57 ± 12 years, 54 men) with first-time reperfused AMI. Baseline CMR was obtained at 8 ± 5 days post-AMI, and follow-up CMR at 6 ± 1.4 months. T1/T2 mapping, T2-weighted, and late gadolinium enhancement (LGE) acquisitions were performed at baseline and cine imaging was used to determine adverse LV remodeling, defined as end-diastolic volume increase by 20% at 6 months. RESULTS: A total of 11 (17%) patients developed adverse LV remodeling. At baseline, patients with LV remodeling showed larger edema (30 ± 11 vs. 22 ± 10%LV; p < 0.05), infarct size (24 ± 11 vs. 14 ± 8%LV; p < 0.001), extracellular volume (ECVinfarct; 63 ± 12 vs. 47 ± 11%; p < 0.001), and native T2infarct (95 ± 16 vs. 78 ± 17 ms; p < 0.01). ECVinfarct and infarct size by LGE were the best predictors of LV remodeling with areas under the curve (AUCs) of 0.843 and 0.789, respectively (all p < 0.01). Native T1infarct had the lowest AUC of 0.549 (p = 0.668) and was inferior to edema size by T2-weighted imaging (AUC = 0.720; p < 0.05) and native T2infarct (AUC = 0.766; p < 0.01). CONCLUSION: In this study, ECVinfarct and infarct size by LGE were the best predictors for the development of LV remodeling within 6 months after AMI, with a better discriminative performance than non-contrast mapping CMR. CLINICAL RELEVANCE STATEMENT: This study demonstrates the predictive value of contrast-enhanced and non-contrast as well as conventional and novel CMR techniques for the development of LV remodeling following AMI, which might help define precise CMR endpoints in experimental and clinical myocardial infarction trials. KEY POINTS: ⢠Multiparametric CMR provides insights into left ventricular remodeling at 6 months following an acute myocardial infarction. ⢠Extracellular volume fraction and infarct size are the best predictors for adverse left ventricular remodeling. ⢠Contrast-enhanced T1 mapping has a better predictive performance than non-contrast standard CMR and T1/T2 mapping.
Assuntos
Meios de Contraste , Infarto do Miocárdio , Masculino , Humanos , Meios de Contraste/farmacologia , Remodelação Ventricular , Imagem Cinética por Ressonância Magnética/métodos , Valor Preditivo dos Testes , Gadolínio , Infarto do Miocárdio/complicações , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/patologia , Imageamento por Ressonância Magnética , Miocárdio/patologia , Edema/patologia , Função Ventricular EsquerdaRESUMO
OBJECTIVE: To determine the influence of arterial hypertension (AHT), sex, and the interaction between both left- and right ventricular (LV, RV) morphology, function, and tissue characteristics. METHODS: The Hamburg City Health Study (HCHS) is a population-based, prospective, monocentric study. 1972 individuals without a history of cardiac diseases/ interventions underwent 3 T cardiac MR imaging (CMR). Generalized linear models were conducted, including AHT, sex (and the interaction if significant), age, body mass index, place of birth, diabetes mellitus, smoking, hyperlipoproteinemia, atrial fibrillation, and medication. RESULTS: Of 1972 subjects, 68% suffered from AHT. 42% with AHT and 49% controls were female. Females overall showed a higher ejection fraction (EF) (LV: regression coefficient +2.4% [95% confidence interval: 1.7; 3.1]), lower volumes and LV mass (-19.8% [-21.3; -18.5]), and prolonged native septal T1 (+22.1 ms [18.3; 25.9])/T2 relaxation times (+1.1 ms [0.9; 1.3]) (all p < 0.001) compared to males. Subjects with AHT showed a higher EF (LV: +1.2% [0.3; 2.0], p = 0.009) and LV mass (+6.6% [4.3; 9.0], p < 0.001) than controls. The interaction between sex and AHT influenced mapping. After excluding segments with LGE, males (-0.7 ms [-1.0; -0.3 | ) and females with AHT (-1.1 ms [-1.6; -0.6]) showed shorter T2 relaxation times than the sex-respective controls (p < 0.001), but the effect was stronger in females. CONCLUSION: In the HCHS, female and male subjects with AHT likewise showed a higher EF and LV mass than controls, independent of sex. However, differences in tissue characteristics between subjects with AHT and controls appeared to be sex-specific. CLINICAL RELEVANCE STATEMENT: The interaction between sex and cardiac risk factors is an underestimated factor that should be considered when comparing tissue characteristics between hypertensive subjects and controls, and when establishing cut-off values for normal and pathological relaxation times. KEY POINTS: There are sex-dependent differences in arterial hypertension, but it is unclear if cardiac MR parameters are sex-specific. Differences in cardiac MR parameters between hypertensive subjects and healthy controls appeared to be sex-specific for tissue characteristics. Sex needs to be considered when comparing tissue characteristics in patients with arterial hypertension to healthy controls.
Assuntos
Ventrículos do Coração , Hipertensão , Imageamento por Ressonância Magnética , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Hipertensão/epidemiologia , Hipertensão/fisiopatologia , Estudos Prospectivos , Ventrículos do Coração/diagnóstico por imagem , Ventrículos do Coração/fisiopatologia , Ventrículos do Coração/patologia , Alemanha/epidemiologia , Imageamento por Ressonância Magnética/métodos , Fatores Sexuais , Adulto , IdosoRESUMO
BACKGROUND: The presence of myocardial scar is associated with poor prognosis in several underlying diseases. Late-gadolinium-enhancement (LGE) cardiovascular magnetic resonance (CMR) imaging reveals clinically silent "unrecognized myocardial scar" (UMS), but the etiology of UMS often remains unclear. This population-based CMR study evaluated prevalence, localization, patterns, and risk factors of UMS. METHODS: The study population consisted of 1064 consecutive Hamburg City Health Study participants without a history of coronary heart disease or myocarditis. UMS was assessed by standard-phase-sensitive-inversion-recovery LGE CMR. RESULTS: Median age was 66 [quartiles 59, 71] years and 37% (388/1064) were females. UMS was detected in 244 (23%) participants. Twenty-five participants (10%) had ischemic, and 217 participants (89%) had non-ischemic scar patterns, predominantly involving the basal inferolateral left-ventricular (LV) myocardium (75%). Two participants (1%) had coincident ischemic and non-ischemic scar. The presence of any UMS was independently associated with LV ejection fraction (odds ratios (OR) per standard deviation (SD) 0.77 (confidence interval (CI) 0.65-0.90), p = 0.002) and LV mass (OR per SD 1.54 (CI 1.31-1.82), p < 0.001). Ischemic UMS was independently associated with LV ejection fraction (OR per SD 0.58 (CI 0.39-0.86), p = 0.007), LV mass (OR per SD 1.74 (CI 1.25-2.45), p = 0.001), and diabetes (OR 4.91 (CI 1.66-13.03), p = 0.002). Non-ischemic UMS was only independently associated with LV mass (OR per SD 1.44 (CI 1.24-1.69), p < 0.001). CONCLUSION: UMS, in particular with a non-ischemic pattern, is frequent in individuals without known cardiac disease and predominantly involves the basal inferolateral LV myocardium. Presence of UMS is independently associated with a lower LVEF, a higher LV mass, and a history of diabetes.
Assuntos
Cicatriz , Meios de Contraste , Imagem Cinética por Ressonância Magnética , Miocárdio , Valor Preditivo dos Testes , Volume Sistólico , Função Ventricular Esquerda , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Meios de Contraste/administração & dosagem , Cicatriz/diagnóstico por imagem , Cicatriz/fisiopatologia , Cicatriz/etiologia , Cicatriz/patologia , Idoso , Miocárdio/patologia , Fatores de Risco , Prevalência , Alemanha/epidemiologia , Compostos Organometálicos/administração & dosagem , Cardiomiopatias/diagnóstico por imagem , Cardiomiopatias/fisiopatologia , Cardiomiopatias/patologia , Estudos Transversais , Estudos Prospectivos , Isquemia Miocárdica/diagnóstico por imagem , Isquemia Miocárdica/fisiopatologia , Doenças AssintomáticasRESUMO
OBJECTIVES: Parametric cardiac magnetic resonance (CMR) techniques have improved the diagnosis of pathologies. However, the primary tool for differentiating non-ST elevation myocardial infarction (NSTEMI) from myocarditis is still a visual assessment of conventional signal-intensity-based images. This study aimed at analyzing the ability of parametric compared to conventional techniques to visually differentiate ischemic from non-ischemic myocardial injury patterns. METHODS: Twenty NSTEMI patients, twenty infarct-like myocarditis patients, and twenty controls were examined using cine, T2-weighted CMR (T2w) and late gadolinium enhancement (LGE) imaging and T1/T2 mapping on a 1.5 T scanner. CMR images were presented in random order to two experienced fully blinded observers, who had to assign them to three categories by a visual analysis: NSTEMI, myocarditis, or healthy. RESULTS: The conventional approach (cine, T2w and LGE combined) had the best diagnostic accuracy with 92% (95%CI: 81-97) for NSTEMI and 86% (95%CI: 71-94) for myocarditis. The diagnostic accuracies using T1 maps were 88% (95%CI: 74-95) and 80% (95%CI: 62-91), 84% (95%CI: 67-93) and 74% (95%CI: 54-87) for LGE, and 83% (95%CI: 66-92) and 73% (95%CI: 53-87) for T2w. The accuracies for cine (72% (95%CI: 52-86) and 60% (95%CI: 38-78)) and T2 maps (62% (95%CI: 40-79) and 47% (95%CI: 28-68)) were significantly lower compared to the conventional approach (p < 0.001 and p < 0.0001). CONCLUSIONS: The conventional approach provided a reliable visual discrimination between NSTEMI, myocarditis, and controls. The diagnostic accuracy of a visual pattern analysis of T1 maps was not significantly inferior, whereas the diagnostic accuracy of T2 maps was not sufficient in this context. CLINICAL RELEVANCE STATEMENT: The ability of parametric compared to conventional CMR techniques to visually differentiate ischemic from non-ischemic myocardial injury patterns can avoid potentially unnecessary invasive coronary angiography and help to shorten CMR protocols and to reduce the need of gadolinium contrast agents. KEY POINTS: ⢠A visual differentiation of ischemic from non-ischemic patterns of myocardial injury is reliably achieved by a combination of conventional CMR techniques (cine, T2-weighted and LGE imaging). ⢠There is no significant difference in accuracies between visual pattern analysis on native T1 maps without providing quantitative values and a conventional combined approach for differentiating non-ST elevation myocardial infarction, infarct-like myocarditis, and controls. ⢠T2 maps do not provide a sufficient diagnostic accuracy for visual pattern analysis for differentiating non-ST elevation myocardial infarction, infarct-like myocarditis, and controls.
Assuntos
Miocardite , Infarto do Miocárdio sem Supradesnível do Segmento ST , Infarto do Miocárdio com Supradesnível do Segmento ST , Humanos , Miocardite/diagnóstico por imagem , Miocardite/patologia , Meios de Contraste , Infarto do Miocárdio sem Supradesnível do Segmento ST/patologia , Miocárdio/patologia , Imagem Cinética por Ressonância Magnética/métodos , Gadolínio , Infarto do Miocárdio com Supradesnível do Segmento ST/patologia , Valor Preditivo dos TestesRESUMO
OBJECTIVES: Cardiac adaptation in endurance athletes is a well-known phenomenon, but the acute impact of strenuous exercise is rarely reported on. The aim of this study was to analyze the alterations in biventricular and biatrial function in triathletes after an endurance race using novel feature-tracking cardiac magnetic resonance (FT-CMR). METHODS: Fifty consecutive triathletes (45 ± 10 years; 80% men) and twenty-eight controls were prospectively recruited, and underwent 1.5-T CMR. Biventricular and biatrial volumes, left ventricular ejection fraction (LVEF), FT-CMR analysis, and late gadolinium imaging (LGE) were performed. Global systolic longitudinal (GLS), circumferential (GCS), and radial strain (GRS) were assessed. CMR was performed at baseline and following an endurance race. High-sensitive troponin T and NT-proBNP were determined. The time interval between race completion and CMR was 2.3 ± 1.1 h (range 1-5 h). RESULTS: Post-race troponin T (p < 0.0001) and NT-proBNP (p < 0.0001) were elevated. LVEF remained constant (62 ± 6 vs. 63 ± 7%, p = 0.607). Post-race LV GLS decreased by tendency (- 18 ± 2 vs. - 17 ± 2%, p = 0.054), whereas GCS (- 16 ± 4 vs. - 18 ± 4%, p < 0.05) and GRS increased (39 ± 11 vs. 44 ± 11%, p < 0.01). Post-race right ventricular GLS (- 19 ± 3 vs. - 19 ± 3%, p = 0.668) remained constant and GCS increased (- 7 ± 2 vs. - 8 ± 3%, p < 0.001). Post-race left atrial GLS (30 ± 8 vs. 24 ± 6%, p < 0.0001) decreased while right atrial GLS remained constant (25 ± 6 vs. 24 ± 6%, p = 0.519). CONCLUSIONS: The different alterations of post-race biventricular and biatrial strain might constitute an intrinsic compensatory mechanism following an acute bout of endurance exercise. The combined use of strain parameters may allow a better characterization of ventricular and atrial function in endurance athletes. KEY POINTS: ⢠Triathletes demonstrate a decrease of LV global longitudinal strain by tendency and constant RV global longitudinal strain following an endurance race. ⢠Post-race LV and RV global circumferential and radial strains increase, possibly indicating a compensatory mechanism after an acute endurance exercise bout. ⢠Subgroup analyses of male triathletes with focal myocardial fibrosis did not demonstrate alterations in biventricular and biatrial strain after an endurance race.
Assuntos
Imagem Cinética por Ressonância Magnética , Função Ventricular Esquerda , Adulto , Feminino , Fibrose , Humanos , Imagem Cinética por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Miocárdio/patologia , Valor Preditivo dos Testes , Volume Sistólico , Troponina TRESUMO
OBJECTIVES: To evaluate systolic cardiac dysfunction in paediatric MFS patients with chest wall deformity using cardiac magnetic resonance (CMR) imaging and feature-tracking strain analysis. METHODS: Forty paediatric MFS patients (16 ± 3 years, range 8-22 years) and 20 age-matched healthy controls (16 ± 4 years, range 11-24 years) were evaluated retrospectively. Biventricular function and volumes were determined using cine sequences. Feature-tracking CMR was used to assess global systolic longitudinal (GLS), circumferential (GCS) and radial strain (GRS). A dedicated balanced turbo field echo sequence was used to quantify chest wall deformity by measuring the Haller index (HI). RESULTS: LV volumes and ejection fraction (EF) were similar in MFS patients and controls. There was a trend for lower right ventricular (RV) volume (75 ± 17 vs. 81 ± 10 ml/m2, p = 0.08), RV stroke volume (41 ± 12 vs. 50 ± 5 ml/m2, p < 0.001) and RVEF (55 ± 10 vs. 62 ± 6%, p < 0.01) in MFS patients. A subgroup of MFS patients had an increased HI compared to controls (4.6 ± 1.7 vs. 2.6 ± 0.3, p < 0.001). They demonstrated a reduced RVEF compared to MFS patients without chest wall deformity (50 ± 11% vs. 58 ± 8%, p = 0.01) and controls (p < 0.001). LV GLS was attenuated when HI ≥ 3.25 (- 16 ± 2 vs. - 18 ± 3%, p = 0.03), but not GCS and GRS. LV GLS (p < 0.01) and GCS (p < 0.0001) were attenuated in MFS patients compared to controls, but not GRS (p = 0.31). RV GLS was attenuated in MFS patients compared to controls (- 21 ± 3 vs. - 23 ± 3%, p < 0.05). CONCLUSION: Chest wall deformity in paediatric MFS patients is associated with reduced RV volume, ejection fraction and GLS. Feature-tracking CMR also indicates impairment of systolic LV function in paediatric MFS patients. KEY POINTS: ⢠Paediatric Marfan patients demonstrate reduced RV volume and ejection fraction compared to healthy controls. ⢠A concordant attenuation in RV global longitudinal strain was observed in Marfan patients, while the RV global circumferential strain was increased, indicating a possible compensatory mechanism. ⢠Subgroup analyses demonstrated alterations in RV ejection fraction and RV/LV global strain parameters, indicating a possible association of severe chest wall deformity with biventricular dysfunction in paediatric Marfan patients.
Assuntos
Síndrome de Marfan , Parede Torácica , Adolescente , Adulto , Criança , Humanos , Imagem Cinética por Ressonância Magnética , Síndrome de Marfan/complicações , Síndrome de Marfan/diagnóstico por imagem , Estudos Retrospectivos , Volume Sistólico , Parede Torácica/diagnóstico por imagem , Função Ventricular Esquerda , Adulto JovemRESUMO
Primary ciliary dyskinesia (PCD) is a genetically heterogeneous, autosomal-recessive disorder, characterized by oto-sino-pulmonary disease and situs abnormalities. PCD-causing mutations have been identified in 20 genes, but collectively they account for only â¼65% of all PCDs. To identify mutations in additional genes that cause PCD, we performed exome sequencing on three unrelated probands with ciliary outer and inner dynein arm (ODA+IDA) defects. Mutations in SPAG1 were identified in one family with three affected siblings. Further screening of SPAG1 in 98 unrelated affected individuals (62 with ODA+IDA defects, 35 with ODA defects, 1 without available ciliary ultrastructure) revealed biallelic loss-of-function mutations in 11 additional individuals (including one sib-pair). All 14 affected individuals with SPAG1 mutations had a characteristic PCD phenotype, including 8 with situs abnormalities. Additionally, all individuals with mutations who had defined ciliary ultrastructure had ODA+IDA defects. SPAG1 was present in human airway epithelial cell lysates but was not present in isolated axonemes, and immunofluorescence staining showed an absence of ODA and IDA proteins in cilia from an affected individual, thus indicating that SPAG1 probably plays a role in the cytoplasmic assembly and/or trafficking of the axonemal dynein arms. Zebrafish morpholino studies of spag1 produced cilia-related phenotypes previously reported for PCD-causing mutations in genes encoding cytoplasmic proteins. Together, these results demonstrate that mutations in SPAG1 cause PCD with ciliary ODA+IDA defects and that exome sequencing is useful to identify genetic causes of heterogeneous recessive disorders.
Assuntos
Antígenos de Superfície/genética , Cílios/genética , Transtornos da Motilidade Ciliar/genética , Dineínas/genética , Proteínas de Ligação ao GTP/genética , Síndrome de Kartagener/genética , Mutação/genética , Adolescente , Adulto , Animais , Axonema/genética , Criança , Pré-Escolar , Citoplasma/genética , Células Epiteliais/metabolismo , Exoma , Feminino , Humanos , Lactente , Masculino , Linhagem , Fenótipo , Adulto Jovem , Peixe-ZebraRESUMO
Primary ciliary dyskinesia (PCD) is a genetically heterogeneous recessive disorder caused by several distinct defects in genes responsible for ciliary beating, leading to defective mucociliary clearance often associated with randomization of left/right body asymmetry. Individuals with PCD caused by defective radial spoke (RS) heads are difficult to diagnose owing to lack of gross ultrastructural defects and absence of situs inversus. Thus far, most mutations identified in human radial spoke genes (RSPH) are loss-of-function mutations, and missense variants have been rarely described. We studied the consequences of different RSPH9, RSPH4A, and RSPH1 mutations on the assembly of the RS complex to improve diagnostics in PCD. We report 21 individuals with PCD (16 families) with biallelic mutations in RSPH9, RSPH4A, and RSPH1, including seven novel mutations comprising missense variants, and performed high-resolution immunofluorescence analysis of human respiratory cilia. Missense variants are frequent genetic defects in PCD with RS defects. Absence of RSPH4A due to mutations in RSPH4A results in deficient axonemal assembly of the RS head components RSPH1 and RSPH9. RSPH1 mutant cilia, lacking RSPH1, fail to assemble RSPH9, whereas RSPH9 mutations result in axonemal absence of RSPH9, but do not affect the assembly of the other head proteins, RSPH1 and RSPH4A. Interestingly, our results were identical in individuals carrying loss-of-function mutations, missense variants, or one amino acid deletion. Immunofluorescence analysis can improve diagnosis of PCD in patients with loss-of-function mutations as well as missense variants. RSPH4A is the core protein of the RS head.
Assuntos
Proteínas do Citoesqueleto/genética , Proteínas de Ligação a DNA/genética , Síndrome de Kartagener/diagnóstico , Proteínas/genética , Adolescente , Adulto , Criança , Pré-Escolar , Proteínas do Citoesqueleto/metabolismo , Análise Mutacional de DNA , Proteínas de Ligação a DNA/metabolismo , Feminino , Técnica Indireta de Fluorescência para Anticorpo , Humanos , Síndrome de Kartagener/genética , Síndrome de Kartagener/metabolismo , Masculino , Mutação de Sentido Incorreto , Multimerização Proteica , Proteínas/metabolismo , Adulto JovemRESUMO
Myocarditis is characterized by various clinical manifestations, with ventricular arrhythmia (VA) as a frequent symptom at initial presentation. Here, we investigated characteristics and prognostic relevance of VA in patients with myocarditis. The study population consisted of 76 patients with myocarditis, verified by biopsy and/or cardiac magnetic resonance (CMR) imaging, including 38 consecutive patients with VA (45 ± 3 years, 68% male) vs. 38 patients without VA (NVA) (38 ± 2 years, 84% male) serving as a control group. VA was monomorphic ventricular tachycardia in 55% of patients, premature ventricular complexes in 50% and ventricular fibrillation in 29%. The left ventricular ejection fraction at baseline was 47 ± 2% vs. 40 ± 3% in VA vs. NVA patients (p = 0.069). CMR showed late gadolinium enhancement more often in VA patients (94% vs. 69%; p = 0.016), incorporating 17.6 ± 1.8% vs. 8.2 ± 1.3% of myocardial mass (p < 0.001). Radiofrequency catheter ablation for VA was initially performed in nine (24%) patients, of whom five remained free from any recurrence over 24 ± 3 months. Taken together, in patients with myocarditis, reduced left ventricular ejection fraction does not predict VA occurrence but CMR shows late gadolinium enhancement more frequently and to a larger extent in VA than in NVA patients, potentially guiding catheter ablation as a reasonable treatment of VA in this population.
RESUMO
BACKGROUND: There is a paucity of data on cardiovascular magnetic resonance feature tracking (CMR-FT) in patients with dilated cardiomyopathy (DCM). We aimed at describing global and segmental myocardial strain patterns and a potential association with the presence of focal myocardial scarring in DCM patients by CMR-FT. METHODS: Thirty-nine patients with DCM and reduced left ventricular (LV) ejection fraction (mean 21±8%) underwent CMR including standard cine steady-state free precession (SSFP) sequences and late gadolinium enhancement (LGE). We measured global LV longitudinal as well as global and segmental circumferential and radial strain. The presence of focal myocardial fibrosis was assessed on LGE images. RESULTS: Nineteen patients had focal myocardial fibrosis on LGE images with the highest prevalence in the basal septal segments II and III, which were affected in 12 (63%) and 13 (68%) patients. Furthermore, there was a significantly lower average short-axis LV radial strain (LVSAX-RS) in these segments (4.89 (-1.55 to 11.34) %) compared with the average of the other myocardial segments (21.20 (17.36 to 25.05)%; p<0.001) after adjusting for LGE and left-bundle branch block (LBBB). In general, LV segments with LGE had lower model-based mean LVSAX-RS values (17.65 (10.37 to 24.93) %) compared with those without LGE (19.40 (15.43 to 23.37) %), but this effect was not significant after adjusting for the presence of LBBB (p=0.630). CONCLUSION: Our findings revealed a coincidence of impaired radial strain and focal myocardial fibrosis in the basal septal LV myocardial segments of patients with DCM. Regardless of this pattern, we did not find a general, significant effect of myocardial fibrosis on strain in our cohort. Future studies are required to assess the potential prognostic implications of myocardial strain patterns in addition to the assessment of myocardial fibrosis in patients with DCM.
Assuntos
Cardiomiopatias , Cardiomiopatia Dilatada , Humanos , Cardiomiopatia Dilatada/diagnóstico por imagem , Imagem Cinética por Ressonância Magnética/métodos , Meios de Contraste , Gadolínio , Fibrose , Cardiomiopatias/diagnóstico por imagemRESUMO
BACKGROUND: Reliable reference intervals are crucial for clinical application of myocardial T1 and T2 mapping cardiovascular magnetic resonance imaging. This study evaluated the impact of sex and cardiovascular risk factors on myocardial T1, extracellular volume fraction (ECV), and T2 at 3T in the population-based HCHS (Hamburg City Health Study). METHODS: The final study sample consisted of 1576 consecutive HCHS participants between 46 and 78 years without prevalent heart disease, including 1020 (67.3%) participants with hypertension and 110 (7.5%) with diabetes. T1 and T2 mapping were performed on a 3T scanner using 5b(3b)3b modified Look-Locker inversion recovery and T2 prepared, fast-low-angle shot sequence, respectively. Stepwise regression analyses were performed to identify variables with an independent impact on T1, ECV, and T2. Reference intervals were defined as the interval between the 2.5% and 97.5% quantiles. RESULTS: Sex was the major independent influencing factor of myocardial native T1, ECV, and T2. Female patients had significantly higher upper limits of reference intervals for native T1 (1112-1261 versus 1079-1241 ms), ECV (23%-33% versus 22%-32%), and T2 (36-46 versus 35-45 ms) compared with male patients (all P<0.001). Cardiovascular risk factors, such as diabetes and hypertension, did not systematically affect native T1. There was an independent association of T2 by hypertension and, to a lesser degree, by left ventricular mass, heart rate (all P<0.001), and body mass index (P=0.001). CONCLUSIONS: Sex needs to be considered as the major, independent influencing factor for clinical application of myocardial T1, ECV, and T2 measurements. Consequently, sex-specific reference intervals should be used in clinical routine. Our findings suggest that there is no need for specific reference intervals for myocardial T1 and ECV measurements in individuals with cardiovascular risk factors. However, hypertension should be considered as an additional factor for clinical application of T2 measurements. REGISTRATION: URL: https://www. CLINICALTRIALS: gov; Unique identifier: NCT03934957.
Assuntos
Doenças Cardiovasculares , Hipertensão , Doenças Cardiovasculares/diagnóstico por imagem , Doenças Cardiovasculares/epidemiologia , Feminino , Fatores de Risco de Doenças Cardíacas , Humanos , Hipertensão/diagnóstico , Hipertensão/epidemiologia , Imagem Cinética por Ressonância Magnética/métodos , Masculino , Fatores de RiscoRESUMO
BACKGROUND: Tunnelled haemodialysis catheters are commonly used to perform haemodialysis. Rare complications of these catheters include perforations of major blood vessels or the heart. Albeit rare, these complications can lead to significant morbidity and mortality. CASE SUMMARY: We present a case of late migration of a tunnelled haemodialysis catheter causing a right atrial perforation with subsequent pericardial tamponade, haemodynamic shock, and cardiac arrest. A 51-year-old female patient with end-stage renal disease presented with hypotension and lactate acidosis, indicating circulatory shock, during ambulatory intermittent haemodialysis. Dialysis was performed through a tunnelled haemodialysis catheter that had been implanted more than 1 year ago. Upon admission to the hospital, initial diagnostics, including transthoracic echocardiography and computed tomography scan, showed a circumferential pericardial effusion which was not haemodynamically significant and no other pathological findings. After being transferred to the intensive care unit, the patient again showed signs of haemodynamic shock at the start of another dialysis session which deteriorated to cardiac arrest. Ultimately, using multi-modality imaging, migration of the catheter tip through the right atrial wall into the pericardial space was diagnosed. Emergency sternotomy and surgical extraction of the tunnelled haemodialysis catheter were performed and the patient recovered completely. DISCUSSION: Migration and perforation of a tunnelled haemodialysis catheter can occur late after implantation and lead to circulatory shock, thus requiring immediate diagnostic workup and surgical therapy. Routine diagnostic procedures may be insufficient for making a correct diagnosis. More specific approaches, such as multi-modality imaging including contrast echocardiography, should be implemented upon clinical suspicion.
RESUMO
AIMS: CMR feature tracking strain (CMR-FT) provides prognostic information. However, there is a paucity of data in hypertrophic cardiomyopathy (HCM). We sought to analyze global CMR-FT parameters in all four cardiac chambers and to assess associations with NT-proBNP and cardiac troponin T (hsTnT) in patients with HCM. METHODS: This retrospective study included 144 HCM patients and 16 healthy controls with CMR at 1.5 T. Analyses were performed on standard steady-state free precession cine (SSFP) CMR data using a commercially available software. Global left ventricular (LV) strain was assessed as longitudinal (LVLAX-GLS), circumferential (LVLAX-GCS) and radial strain (LVLAX-GRS) on long -axis (LAX) and as LVSAX-GCS and LVSAX-GRS on short- axis (SAX). Right ventricular (RV-GLS), left atrial (LA-GLS) and right atrial (RA-GLS) strain were assessed on LAX. RESULTS: We found LVLAX-GLS [- 18.9 (- 22.0, - 16.0), - 23.5 (- 25.5, - 22.0) %, p = 0.0001), LVSAX-GRS [86.8 (65.9-115.5), 119.6 (91.3-143.7) %, p = 0.001] and LALAX-GLS [LA2CH-GLS 29.2 (19.1-37.7), LA2CH-GLS 38.2 (34.3-47.1) %, p = 0.0036; LA4CH-GLS 22.4 (14.6-30.7) vs. LA4CH-GLS 33.4 (28.4-37.3) %, p = 0.0033] to be impaired in HCM compared to healthy controls despite normal LVEF. Furthermore, LV and LA strain parameters were impaired in HCM with elevated NT-proBNP and/or hsTnT, despite preserved LVEF compared to HCM with normal biomarker levels. There was a moderate correlation of LV and LA CMR-FT with levels of NT-proBNP and hsTnT. CONCLUSION: CMR-FT reveals LV and LA dysfunction in HCM despite normal LVEF. The association between impaired LV strain and elevated NT-proBNP and hsTnT indicates a link between unapparent functional abnormalities and disease severity in HCM. Typical CMR-FT findings in patients with hypertrophic cardiomyopathy.
Assuntos
Cardiomiopatia Hipertrófica/diagnóstico , Ventrículos do Coração/patologia , Imagem Cinética por Ressonância Magnética/métodos , Contração Miocárdica/fisiologia , Peptídeo Natriurético Encefálico/sangue , Fragmentos de Peptídeos/sangue , Volume Sistólico/fisiologia , Função Ventricular Esquerda/fisiologia , Adulto , Biomarcadores/sangue , Cardiomiopatia Hipertrófica/sangue , Cardiomiopatia Hipertrófica/fisiopatologia , Feminino , Seguimentos , Ventrículos do Coração/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Curva ROC , Estudos RetrospectivosRESUMO
DYX1C1 has been associated with dyslexia and neuronal migration in the developing neocortex. Unexpectedly, we found that deleting exons 2-4 of Dyx1c1 in mice caused a phenotype resembling primary ciliary dyskinesia (PCD), a disorder characterized by chronic airway disease, laterality defects and male infertility. This phenotype was confirmed independently in mice with a Dyx1c1 c.T2A start-codon mutation recovered from an N-ethyl-N-nitrosourea (ENU) mutagenesis screen. Morpholinos targeting dyx1c1 in zebrafish also caused laterality and ciliary motility defects. In humans, we identified recessive loss-of-function DYX1C1 mutations in 12 individuals with PCD. Ultrastructural and immunofluorescence analyses of DYX1C1-mutant motile cilia in mice and humans showed disruptions of outer and inner dynein arms (ODAs and IDAs, respectively). DYX1C1 localizes to the cytoplasm of respiratory epithelial cells, its interactome is enriched for molecular chaperones, and it interacts with the cytoplasmic ODA and IDA assembly factor DNAAF2 (KTU). Thus, we propose that DYX1C1 is a newly identified dynein axonemal assembly factor (DNAAF4).