Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS One ; 19(1): e0287623, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38271322

RESUMO

The rapid spread and evolving nature of COVID-19 variants have raised concerns regarding their competitive dynamics and coinfection scenarios. In this study, we assess the competitive interactions between the Omicron variant and other prominent variants (Alpha, Beta and Delta) on a social network, considering both single infection and coinfection states. Using the SIRS model, we simulate the progression of these variants and analyze their impact on infection rates, mortality and overall disease burden. Our findings demonstrate that the Alpha and Beta strains exhibit comparable contagion levels, with the Alpha strain displaying higher infection and mortality rates. Moreover, the Delta strain emerges as the most prevalent and virulent strain, surpassing the other variants. When introduced alongside the less virulent Omicron strain, the Delta strain results in higher infection and mortality rates. However, the Omicron strain's dominance leads to an overall increase in disease statistics. Remarkably, our study highlights the efficacy of the Omicron variant in supplanting more virulent strains and its potential role in mitigating the spread of infectious diseases. The Omicron strain demonstrates a competitive advantage over the other variants, suggesting its potential to reduce the severity of the disease and alleviate the burden on healthcare systems. These findings underscore the importance of monitoring and understanding the dynamics of COVID-19 variants, as they can inform effective prevention and mitigation strategies, particularly with the emergence of variants that possess a relative advantage in controlling disease transmission.


Assuntos
COVID-19 , Coinfecção , Humanos , COVID-19/epidemiologia , SARS-CoV-2 , Rede Social
2.
PLoS One ; 19(7): e0292910, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38959236

RESUMO

Synchronization is a phenomenon observed in neuronal networks involved in diverse brain activities. Neural mass models such as Wilson-Cowan (WC) and Jansen-Rit (JR) manifest synchronized states. Despite extensive research on these models over the past several decades, their potential of manifesting second-order phase transitions (SOPT) and criticality has not been sufficiently acknowledged. In this study, two networks of coupled WC and JR nodes with small-world topologies were constructed and Kuramoto order parameter (KOP) was used to quantify the amount of synchronization. In addition, we investigated the presence of SOPT using the synchronization coefficient of variation. Both networks reached high synchrony by changing the coupling weight between their nodes. Moreover, they exhibited abrupt changes in the synchronization at certain values of the control parameter not necessarily related to a phase transition. While SOPT was observed only in JR model, neither WC nor JR model showed power-law behavior. Our study further investigated the global synchronization phenomenon that is known to exist in pathological brain states, such as seizure. JR model showed global synchronization, while WC model seemed to be more suitable in producing partially synchronized patterns.


Assuntos
Modelos Neurológicos , Rede Nervosa , Humanos , Rede Nervosa/fisiologia , Encéfalo/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA