Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Brain ; 147(1): 147-162, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-37640028

RESUMO

Multiple sclerosis is a chronic neuroinflammatory disorder characterized by demyelination, oligodendrocyte damage/loss and neuroaxonal injury in the context of immune cell infiltration in the CNS. No neuroprotective therapy is available to promote the survival of oligodendrocytes and protect their myelin processes in immune-mediated demyelinating diseases. Pro-inflammatory CD4 Th17 cells can interact with oligodendrocytes in multiple sclerosis and its animal model, causing injury to myelinating processes and cell death through direct contact. However, the molecular mechanisms underlying the close contact and subsequent detrimental interaction of Th17 cells with oligodendrocytes remain unclear. In this study we used single cell RNA sequencing, flow cytometry and immunofluorescence studies on CNS tissue from multiple sclerosis subjects, its animal model and controls to characterize the expression of cell adhesion molecules by mature oligodendrocytes. We found that a significant proportion of human and murine mature oligodendrocytes express melanoma cell adhesion molecule (MCAM) and activated leukocyte cell adhesion molecule (ALCAM) in multiple sclerosis, in experimental autoimmune encephalomyelitis and in controls, although their regulation differs between human and mouse. We observed that exposure to pro-inflammatory cytokines or to human activated T cells are associated with a marked downregulation of the expression of MCAM but not of ALCAM at the surface of human primary oligodendrocytes. Furthermore, we used in vitro live imaging, immunofluorescence and flow cytometry to determine the contribution of these molecules to Th17-polarized cell adhesion and cytotoxicity towards human oligodendrocytes. Silencing and blocking ALCAM but not MCAM limited prolonged interactions between human primary oligodendrocytes and Th17-polarized cells, resulting in decreased adhesion of Th17-polarized cells to oligodendrocytes and conferring significant protection of oligodendrocytic processes. In conclusion, we showed that human oligodendrocytes express MCAM and ALCAM, which are differently modulated by inflammation and T cell contact. We found that ALCAM is a ligand for Th17-polarized cells, contributing to their capacity to adhere and induce damage to human oligodendrocytes, and therefore could represent a relevant target for neuroprotection in multiple sclerosis.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Humanos , Camundongos , Animais , Linfócitos T CD4-Positivos/metabolismo , Molécula de Adesão de Leucócito Ativado/metabolismo , Adesão Celular , Oligodendroglia/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34417310

RESUMO

T helper (Th)17 cells are considered to contribute to inflammatory mechanisms in diseases such as multiple sclerosis (MS). However, the discussion persists regarding their true role in patients. Here, we visualized central nervous system (CNS) inflammatory processes in models of MS live in vivo and in MS brains and discovered that CNS-infiltrating Th17 cells form prolonged stable contact with oligodendrocytes. Strikingly, compared to Th2 cells, direct contact with Th17 worsened experimental demyelination, caused damage to human oligodendrocyte processes, and increased cell death. Importantly, we found that in comparison to Th2 cells, both human and murine Th17 cells express higher levels of the integrin CD29, which is linked to glutamate release pathways. Of note, contact of human Th17 cells with oligodendrocytes triggered release of glutamate, which induced cell stress and changes in biosynthesis of cholesterol and lipids, as revealed by single-cell RNA-sequencing analysis. Finally, exposure to glutamate decreased myelination, whereas blockade of CD29 preserved oligodendrocyte processes from Th17-mediated injury. Our data provide evidence for the direct and deleterious attack of Th17 cells on the myelin compartment and show the potential for therapeutic opportunities in MS.


Assuntos
Encefalomielite Autoimune Experimental/induzido quimicamente , Glicoproteína Mielina-Oligodendrócito/farmacologia , Oligodendroglia/efeitos dos fármacos , Células Th17/fisiologia , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Adjuvante de Freund , Inflamação , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Oligodendroglia/metabolismo , Toxina Pertussis/toxicidade
3.
Immunol Cell Biol ; 101(1): 65-77, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36260372

RESUMO

Granulocyte-macrophage colony-stimulating factor (GM-CSF) has been implicated in numerous chronic inflammatory diseases, including multiple sclerosis (MS). GM-CSF impacts multiple properties and functions of myeloid cells via species-specific mechanisms. Therefore, we assessed the effect of GM-CSF on different human myeloid cell populations found in MS lesions: monocyte-derived macrophages (MDMs) and microglia. We previously reported a greater number of interleukin (IL)-15+ myeloid cells in the brain of patients with MS than in controls. Therefore, we investigated whether GM-CSF exerts its deleterious effects in MS by increasing IL-15 expression on myeloid cells. We found that GM-CSF increased the proportion of IL-15+ cells and/or IL-15 levels on nonpolarized, M1-polarized and M2-polarized MDMs from healthy donors and patients with MS. GM-CSF also increased IL-15 levels on human adult microglia. When cocultured with GM-CSF-stimulated MDMs, activated autologous CD8+ T lymphocytes secreted and expressed significantly higher levels of effector molecules (e.g. interferon-γ and GM-CSF) compared with cocultures with unstimulated MDMs. However, neutralizing IL-15 did not attenuate enhanced effector molecule expression on CD8+ T lymphocytes triggered by GM-CSF-stimulated MDMs. We showed that GM-CSF stimulation of MDMs increased their expression of CD80 and ICAM-1 and their secretion of IL-6, IL-27 and tumor necrosis factor. These molecules could participate in boosting the effector properties of CD8+ T lymphocytes independently of IL-15. By contrast, GM-CSF did not alter CD80, IL-27, tumor necrosis factor and chemokine (C-X-C motif) ligand 10 expression/secretion by human microglia. Therefore, our results underline the distinct impact of GM-CSF on human myeloid cells abundantly present in MS lesions.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos , Interleucina-27 , Humanos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Interleucina-15 , Macrófagos/metabolismo , Linfócitos T/metabolismo , Fator de Necrose Tumoral alfa
4.
Ann Neurol ; 91(2): 178-191, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34952986

RESUMO

OBJECTIVE: Myelin regeneration in the human central nervous system relies on progenitor cells within the tissue parenchyma, with possible contribution from previously myelinating oligodendrocytes (OLs). In multiple sclerosis, a demyelinating disorder, variables affecting remyelination efficiency include age, severity of initial injury, and progenitor cell properties. Our aim was to investigate the effects of age and differentiation on the myelination potential of human OL lineage cells. METHODS: We derived viable primary OL lineage cells from surgical resections of pediatric and adult brain tissue. Ensheathment capacity using nanofiber assays and transcriptomic profiles from RNA sequencing were compared between A2B5+ antibody-selected progenitors and mature OLs (non-selected cells). RESULTS: We demonstrate that pediatric progenitor and mature cells ensheathed nanofibers more robustly than did adult progenitor and mature cells, respectively. Within both age groups, the percentage of fibers ensheathed and ensheathment length per fiber were greater for A2B5+ progenitors. Gene expression of OL progenitor markers PDGFRA and PTPRZ1 were higher in A2B5+ versus A2B5- cells and in pediatric A2B5+ versus adult A2B5+ cells. The p38 MAP kinases and actin cytoskeleton-associated pathways were upregulated in pediatric cells; both have been shown to regulate OL process outgrowth. Significant upregulation of "cell senescence" genes was detected in pediatric samples; this could reflect their role in development and the increased susceptibility of pediatric OLs to activating cell death responses to stress. INTERPRETATION: Our findings identify specific biological pathways relevant to myelination that are differentially enriched in human pediatric and adult OL lineage cells and suggest potential targets for remyelination enhancing therapies. ANN NEUROL 2022;91:178-191.


Assuntos
Envelhecimento/fisiologia , Diferenciação Celular/fisiologia , Senescência Celular/fisiologia , Bainha de Mielina/fisiologia , Oligodendroglia/fisiologia , Adulto , Morte Celular , Linhagem da Célula , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Células-Tronco Neurais , RNA-Seq , Receptor alfa de Fator de Crescimento Derivado de Plaquetas , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/genética , Transcriptoma , Adulto Jovem
5.
Brain ; 145(12): 4320-4333, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-35202462

RESUMO

Early multiple sclerosis lesions feature relative preservation of oligodendrocyte cell bodies with dying back retraction of their myelinating processes. Cell loss occurs with disease progression. Putative injury mediators include metabolic stress (low glucose/nutrient), pro-inflammatory mediators (interferon γ and tumour necrosis factor α), and excitotoxins (glutamate). Our objective was to compare the impact of these disease relevant mediators on the injury responses of human mature oligodendrocytes. In the current study, we determined the effects of these mediators on process extension and survival of human brain derived mature oligodendrocytes in vitro and used bulk RNA sequencing to identify distinct effector mechanisms that underlie the responses. All mediators induced significant process retraction of the oligodendrocytes in dissociated cell culture. Only metabolic stress (low glucose/nutrient) conditions resulted in delayed (4-6 days) non-apoptotic cell death. Metabolic effects were associated with induction of the integrated stress response, which can be protective or contribute to cell injury dependent on its level and duration of activation. Addition of Sephin1, an agonist of the integrated stress response induced process retraction under control conditions and further enhanced retraction under metabolic stress conditions. The antagonist ISRIB restored process outgrowth under stress conditions, and if added to already stressed cells, reduced delayed cell death and prolonged the period in which recovery could occur. Inflammatory cytokine functional effects were associated with activation of multiple signalling pathways (including Jak/Stat-1) that regulate process outgrowth, without integrated stress response induction. Glutamate application produced limited transcriptional changes suggesting a contribution of effects directly on cell processes. Our comparative studies indicate the need to consider both the specific injury mediators and the distinct cellular mechanisms of responses to them by human oligodendrocytes to identify effective neuroprotective therapies for multiple sclerosis.


Assuntos
Esclerose Múltipla , Humanos , Esclerose Múltipla/patologia , Oligodendroglia/metabolismo , Encéfalo/patologia , Morte Celular , Glucose/metabolismo , Células Cultivadas
6.
BMC Biotechnol ; 22(1): 14, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35549895

RESUMO

BACKGROUND: The discovery of the CRISPR-Cas9 system and its applicability in mammalian embryos has revolutionized the way we generate genetically engineered animal models. To date, models harbouring conditional alleles (i.e. two loxP sites flanking an exon or a critical DNA sequence of interest) are amongst the most widely requested project type that are challenging to generate as they require simultaneous cleavage of the genome using two guides in order to properly integrate the repair template. An approach, using embryo sequential electroporation has been reported in the literature to successfully introduce loxP sites on the same allele. Here, we describe a modification of this sequential electroporation procedure that demonstrated the production of conditional allele mouse models for eight different genes via one of two possible strategies: either by consecutive sequential electroporation (strategy A) or non-consecutive sequential electroporation (strategy B). This latest strategy originated from using the by-product produced when using consecutive sequential electroporation (i.e. mice with a single targeted loxP site) to complete the project. RESULTS: By using strategy A, we demonstrated successful generation of conditional allele models for three different genes (Icam1, Lox, and Sar1b), with targeting efficiencies varying between 5 and 13%. By using strategy B, we generated five conditional allele models (Loxl1, Pard6a, Pard6g, Clcf1, and Mapkapk5), with targeting efficiencies varying between 3 and 25%. CONCLUSION: Our modified electroporation-based approach, involving one of the two alternative strategies, allowed the production of conditional allele models for eight different genes via two different possible paths. This reproducible method will serve as another reliable approach in addition to other well-established methodologies in the literature for conditional allele mouse model generation.


Assuntos
Eletroporação , Alelos , Animais , Sistemas CRISPR-Cas/genética , Eletroporação/métodos , Embrião de Mamíferos , Éxons , Mamíferos/genética , Camundongos
7.
J Biol Chem ; 295(51): 17827-17841, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33454017

RESUMO

In Alzheimer's disease (AD), tau, a microtubule-associated protein (MAP), becomes hyperphosphorylated, aggregates, and accumulates in the somato-dendritic compartment of neurons. In parallel to its intracellular accumulation in AD, tau is also released in the extracellular space, as revealed by its increased presence in cerebrospinal fluid (CSF). Consistent with this, recent studies, including ours, have reported that neurons secrete tau, and several therapeutic strategies aim to prevent the intracellular tau accumulation. Previously, we reported that late endosomes were implicated in tau secretion. Here, we explore the possibility of preventing intracellular tau accumulation by increasing tau secretion. Using neuronal models, we investigated whether overexpression of the vesicle-associated membrane protein 8 (VAMP8), an R-SNARE found on late endosomes, could increase tau secretion. The overexpression of VAMP8 significantly increased tau secretion, decreasing its intracellular levels in the neuroblastoma (N2a) cell line. Increased tau secretion by VAMP8 was also observed in murine hippocampal slices. The intracellular reduction of tau by VAMP8 overexpression correlated to a decrease of acetylated tubulin induced by tau overexpression in N2a cells. VAMP8 staining was preferentially found on late endosomes in N2a cells. Using total internal reflection fluorescence (TIRF) microscopy, the fusion of VAMP8-positive vesicles with the plasma membrane was correlated to the depletion of tau in the cytoplasm. Finally, overexpression of VAMP8 reduced the intracellular accumulation of tau mutants linked to frontotemporal dementia with parkinsonism and α-synuclein by increasing their secretion. Collectively, the present data indicate that VAMP8 could be used to increase tau and α-synuclein clearance to prevent their intracellular accumulation.


Assuntos
Proteínas R-SNARE/metabolismo , Proteínas tau/metabolismo , Acetilação , Animais , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Regulação para Baixo , Endossomos/metabolismo , Demência Frontotemporal/patologia , Hipocampo/metabolismo , Camundongos , Microscopia de Fluorescência , Mutagênese , Neurônios/citologia , Neurônios/metabolismo , Fosforilação , Proteínas R-SNARE/genética , Vesículas Secretórias/metabolismo , Tubulina (Proteína)/metabolismo , alfa-Sinucleína/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo , Proteínas tau/genética
8.
Epilepsia ; 62(1): 176-189, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33140401

RESUMO

OBJECTIVE: Adult drug-resistant epilepsy (DRE) is associated with significant morbidity. Infiltration of immune cells is observed in DRE epileptic foci; however, the relation between DRE and the peripheral immune cell compartment remains only partially understood. We aimed to investigate differences in immune cell populations, cytokines, and neurodegenerative biomarkers in the peripheral blood of subjects with epilepsy versus healthy controls, and in DRE compared to well-controlled epilepsy (WCE). METHODS: Peripheral blood mononuclear cells and serum from >120 age- and sex-matched adults suffering from focal onset epilepsy and controls were analyzed by multipanel flow cytometry, multiplex immunoassays, and ultrasensitive single molecule array. RESULTS: Using a data-driven analytical approach, we identified that CD4 T cells in the peripheral blood are present in a higher proportion in DRE patients. Moreover, we observed that the frequency of CD4 T cells expressing proinflammatory cytokines interleukin (IL)-17A, IL-22, tumor necrosis factor, interferon-γ, and granulocyte-macrophage colony-stimulating factor, but not anti-inflammatory cytokines IL-10 and IL-4, is elevated in the peripheral blood of DRE subjects compared to WCE. In parallel, we found that Th17-related circulating proinflammatory cytokines are elevated, but Th2-related cytokine IL-4 is reduced, in the serum of epilepsy and DRE subjects. As Th17 cells can exert neurotoxicity, we measured levels of serum neurofilament light chain (sNfL), a marker of neuronal injury. We found significantly elevated levels of sNfL in DRE compared to controls, especially among older individuals. SIGNIFICANCE: Our data support that DRE is associated with an expansion of the CD4 Tcell subset in the peripheral blood and with a shift toward a proinflammatory Th17/Th1 CD4 Tcell immune profile. Our results further show that pathological levels of sNfL are more frequent in DRE, supporting a potential neurodegenerative component in adult DRE. With this work, we provide evidence for novel potential inflammatory and degenerative biomarkers in DRE.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Citocinas/imunologia , Epilepsia Resistente a Medicamentos/imunologia , Proteínas de Neurofilamentos/imunologia , Adulto , Contagem de Linfócito CD4 , Estudos de Casos e Controles , Epilepsia/tratamento farmacológico , Epilepsia/imunologia , Feminino , Citometria de Fluxo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Humanos , Imunoensaio , Inflamação , Interferon gama/imunologia , Interleucina-10/imunologia , Interleucina-17/imunologia , Interleucina-4/imunologia , Interleucinas/imunologia , Masculino , Pessoa de Meia-Idade , Imagem Individual de Molécula , Células Th17/imunologia , Células Th2/imunologia , Fator de Necrose Tumoral alfa/imunologia , Adulto Jovem , Interleucina 22
9.
Epilepsy Res ; 192: 107125, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36963302

RESUMO

PURPOSE: Inflammation plays a role in drug-resistant epilepsy (DRE). We have previously reported an increased proportion of CD4 T cells displaying a pro-inflammatory profile in the peripheral blood of adults with DRE. Specific anti-epileptic drugs (AEDs) exhibit immunomodulatory properties that could increase the risk of infections but also contribute to their beneficial impact on DRE and other neurological diseases. The impact of novel generation AEDs on the profile of immune cells and on neuroinflammatory processes remains unclear. METHODS: We compared the influence of brivaracetam and lacosamide on the activation of human and murine peripheral immune cells in vitro and in vivo in active experimental autoimmune encephalomyelitis (EAE), a common mouse model of central nervous system inflammation. RESULTS: We found that brivaracetam and lacosamide at 2.5 µg/ml did not impair the survival and activation of human immune cells, but a higher dose of 25 µg/ml decreased mitogen-induced proliferation of CD8 T cells in vitro. Exposure to high doses of brivaracetam, and to a lesser extent lacosamide, reduced the proportion of CD25+ and CD107a+ CD8+ human T cells in vitro, and the frequency of CNS-infiltrating CD8+ T cells at EAE onset and CD11b+ myeloid cells at peak in vivo. Prophylactic administration of brivaracetam or lacosamide did not delay EAE onset but significantly improved the clinical course in the chronic phase of EAE compared to control. CONCLUSION: Novel generation AEDs do not impair the response to immunization with MOG peptide but improve the course of EAE, possibly through a reduction of neuroaxonal damage.


Assuntos
Encefalomielite Autoimune Experimental , Camundongos , Humanos , Animais , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/prevenção & controle , Lacosamida/uso terapêutico , Linfócitos T CD8-Positivos , Glicoproteína Mielina-Oligodendrócito/toxicidade , Anti-Inflamatórios , Inflamação , Camundongos Endogâmicos C57BL
10.
Front Immunol ; 13: 850616, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35479072

RESUMO

Multiple sclerosis (MS) is characterized by the loss of myelin and of myelin-producing oligodendrocytes (OLs) in the central nervous system (CNS). Pro-inflammatory CD4+ Th17 cells are considered pathogenic in MS and are harmful to OLs. We investigated the mechanisms driving human CD4+ T cell-mediated OL cell death. Using fluorescent and brightfield in vitro live imaging, we found that compared to Th2-polarized cells, Th17-polarized cells show greater interactions with primary human OLs and human oligodendrocytic cell line MO3.13, displaying longer duration of contact, lower mean speed, and higher rate of vesicle-like structure formation at the sites of contact. Using single-cell RNA sequencing, we assessed the transcriptomic profile of primary human OLs and Th17-polarized cells in direct contact or separated by an insert. We showed that upon close interaction, OLs upregulate the expression of mRNA coding for chemokines and antioxidant/anti-apoptotic molecules, while Th17-polarized cells upregulate the expression of mRNA coding for chemokines and pro-inflammatory cytokines such as IL-17A, IFN-γ, and granzyme B. We found that secretion of CCL3, CXCL10, IFN-γ, TNFα, and granzyme B is induced upon direct contact in cocultures of human Th17-polarized cells with human OLs. In addition, we validated by flow cytometry and immunofluorescence that granzyme B levels are upregulated in Th17-polarized compared to Th2-polarized cells and are even higher in Th17-polarized cells upon direct contact with OLs or MO3.13 cells compared to Th17-polarized cells separated from OLs by an insert. Moreover, granzyme B is detected in OLs and MO3.13 cells following direct contact with Th17-polarized cells, suggesting the release of granzyme B from Th17-polarized cells into OLs/MO3.13 cells. To confirm granzyme B-mediated cytotoxicity toward OLs, we showed that recombinant human granzyme B can induce OLs and MO3.13 cell death. Furthermore, pretreatment of Th17-polarized cells with a reversible granzyme B blocker (Ac-IEPD-CHO) or a natural granzyme B blocker (serpina3N) improved survival of MO3.13 cells upon coculture with Th17 cells. In conclusion, we showed that human Th17-polarized cells form biologically significant contacts with human OLs and exert direct toxicity by releasing granzyme B.


Assuntos
Esclerose Múltipla , Células Th17 , Granzimas/metabolismo , Humanos , Interferon gama/metabolismo , Esclerose Múltipla/metabolismo , Oligodendroglia , RNA Mensageiro/metabolismo , Células Th17/metabolismo
11.
J Clin Invest ; 131(8)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33635833

RESUMO

Dysregulated immune profiles have been described in symptomatic patients infected with SARS-CoV-2. Whether the reported immune alterations are specific to SARS-CoV-2 infection or also triggered by other acute illnesses remains unclear. We performed flow cytometry analysis on fresh peripheral blood from a consecutive cohort of (a) patients hospitalized with acute SARS-CoV-2 infection, (b) patients of comparable age and sex hospitalized for another acute disease (SARS-CoV-2 negative), and (c) healthy controls. Using both data-driven and hypothesis-driven analyses, we found several dysregulations in immune cell subsets (e.g., decreased proportion of T cells) that were similarly associated with acute SARS-CoV-2 infection and non-COVID-19-related acute illnesses. In contrast, we identified specific differences in myeloid and lymphocyte subsets that were associated with SARS-CoV-2 status (e.g., elevated proportion of ICAM-1+ mature/activated neutrophils, ALCAM+ monocytes, and CD38+CD8+ T cells). A subset of SARS-CoV-2-specific immune alterations correlated with disease severity, disease outcome at 30 days, and mortality. Our data provide an understanding of the immune dysregulation specifically associated with SARS-CoV-2 infection among acute care hospitalized patients. Our study lays the foundation for the development of specific biomarkers to stratify SARS-CoV-2-positive patients at risk of unfavorable outcomes and to uncover candidate molecules to investigate from a therapeutic perspective.


Assuntos
COVID-19/imunologia , Leucócitos/classificação , Leucócitos/imunologia , SARS-CoV-2 , Doença Aguda , Adulto , Idoso , Subpopulações de Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , COVID-19/epidemiologia , COVID-19/mortalidade , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Hospitalização , Humanos , Ativação Linfocitária , Masculino , Pessoa de Meia-Idade , Modelos Imunológicos , Monócitos/imunologia , Análise Multivariada , Neutrófilos/imunologia , Pandemias , Prognóstico , Estudos Prospectivos , Quebeque/epidemiologia , Fatores de Risco , SARS-CoV-2/imunologia , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA