Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(18): e2211501120, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37094131

RESUMO

Vac8, a yeast vacuolar protein with armadillo repeats, mediates various cellular processes by changing its binding partners; however, the mechanism by which Vac8 differentially regulates these processes remains poorly understood. Vac8 interacts with Nvj1 to form the nuclear-vacuole junction (NVJ) and with Atg13 to mediate cytoplasm-to-vacuole targeting (Cvt), a selective autophagy-like pathway that delivers cytoplasmic aminopeptidase I directly to the vacuole. In addition, Vac8 associates with Myo2, a yeast class V myosin, through its interaction with Vac17 for vacuolar inheritance from the mother cell to the emerging daughter cell during cell divisions. Here, we determined the X-ray crystal structure of the Vac8-Vac17 complex and found that its interaction interfaces are bipartite, unlike those of the Vac8-Nvj1 and Vac8-Atg13 complexes. When the key amino acids present in the interface between Vac8 and Vac17 were mutated, vacuole inheritance was severely impaired in vivo. Furthermore, binding of Vac17 to Vac8 prevented dimerization of Vac8, which is required for its interactions with Nvj1 and Atg13, by clamping the H1 helix to the ARM1 domain of Vac8 and thereby preventing exposure of the binding interface for Vac8 dimerization. Consistently, the binding affinity of Vac17-bound Vac8 for Nvj1 or Atg13 was markedly lower than that of free Vac8. Likewise, free Vac17 had no affinity for the Vac8-Nvj1 and Vac8-Atg13 complexes. These results provide insights into how vacuole inheritance and other Vac8-mediated processes, such as NVJ formation and Cvt, occur independently of one another.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo , Citoplasma/metabolismo , Transporte Proteico , Autofagia , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Receptores de Superfície Celular/metabolismo
2.
Int J Mol Sci ; 23(4)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35216480

RESUMO

An asymmetry in cytosolic pH between mother and daughter cells was reported to underlie cellular aging in the budding yeast Saccharomyces cerevisiae; however, the underlying mechanism remains unknown. Preferential accumulation of Pma1p, which pumps cytoplasmic protons out of cells, at the plasma membrane of mother cells, but not of their newly-formed daughter cells, is believed to be responsible for the pH increase in mother cells by reducing the level of cytoplasmic protons. This, in turn, decreases the acidity of vacuoles, which is well correlated with aging of yeast cells. In this study, to identify genes that regulate the preferential accumulation of Pma1p in mother cells, we performed a genome-wide screen using a collection of single gene deletion yeast strains. A subset of genes involved in the endocytic pathway, such as VPS8, VPS9, and VPS21, was important for Pma1p accumulation. Unexpectedly, however, there was little correlation between deletion of each of these genes and the replicative lifespan of yeast, suggesting that Pma1p accumulation in mother cells is not the key determinant that underlies aging of mother cells.


Assuntos
Divisão Celular , Senescência Celular , ATPases Translocadoras de Prótons/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , ATPases Translocadoras de Prótons/fisiologia , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia
3.
Commun Biol ; 6(1): 960, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735522

RESUMO

Human ATP-binding cassette transporter subfamily B6 (ABCB6) is a mitochondrial ATP-driven pump that translocates porphyrins from the cytoplasm into mitochondria for heme biosynthesis. Within the transport pathway, a conserved aromatic residue W546 located in each monomer plays a pivotal role in stabilizing the occluded conformation via π-stacking interactions. Herein, we employed cryo-electron microscopy to investigate the structural consequences of a single W546A mutation in ABCB6, both in detergent micelles and nanodiscs. The results demonstrate that the W546A mutation alters the conformational dynamics of detergent-purified ABCB6, leading to entrapment of the transporter in an outward-facing transient state. However, in the nanodisc system, we observed a direct interaction between the transporter and a phospholipid molecule that compensates for the absence of the W546 residue, thereby facilitating the normal conformational transition of the transporter toward the occluded state following ATP hydrolysis. The findings also reveal that adoption of the outward-facing conformation causes charge repulsion between ABCB6 and the bound substrate, and rearrangement of key interacting residues at the substrate-binding site. Consequently, the affinity for the substrate is significantly reduced, facilitating its release from the transporter.


Assuntos
Detergentes , Porfirinas , Humanos , Microscopia Crioeletrônica , Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Membrana Transportadoras , Trifosfato de Adenosina
4.
J Cell Biol ; 222(4)2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36757370

RESUMO

The dynamin-like GTPase atlastin is believed to be the minimal machinery required for homotypic endoplasmic reticulum (ER) membrane fusion, mainly because Drosophila atlastin is sufficient to drive liposome fusion. However, it remains unclear whether mammalian atlastins, including the three human atlastins, are sufficient to induce liposome fusion, raising doubts about their major roles in mammalian cells. Here, we show that all human atlastins are sufficient to induce fusion when reconstituted into liposomes with a lipid composition mimicking that of the ER. Although the fusogenic activity of ATL1, which is predominantly expressed in neuronal cells, was weaker than that of ATL2 or ATL3, the addition of M1-spastin, a neuron-specific factor, markedly increased ATL1-mediated liposome fusion. Although we observed efficient fusion between ER microsomes isolated from cultured, non-neuronal cells that predominantly express ATL2-1, an autoinhibited isoform of ATL2, ATL2-1 failed to support liposome fusion by itself as reported previously, indicating that cellular factors enable ATL2-1 to mediate ER fusion in vivo.


Assuntos
Retículo Endoplasmático , GTP Fosfo-Hidrolases , Lipossomos , Humanos , Dinaminas , Retículo Endoplasmático/fisiologia , Lipídeos/química , Fusão de Membrana/fisiologia
5.
iScience ; 26(12): 108386, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38025788

RESUMO

The endoplasmic reticulum (ER) consists of the nuclear envelope and a connected peripheral network of tubules and interspersed sheets. The structure of ER tubules is generated and maintained by various proteins, including reticulons, DP1/Yop1p, atlastins, and lunapark. Reticulons and DP1/Yop1p stabilize the high membrane curvature of ER tubules, and atlastins mediate homotypic membrane fusion between ER tubules; however, the exact role of lunapark remains poorly characterized. Here, using isolated yeast ER microsomes and reconstituted proteoliposomes, we directly examined the function of the yeast lunapark Lnp1p for yeast atlastin Sey1p-mediated ER fusion and found that Lnp1p inhibits Sey1p-driven membrane fusion. Furthermore, by using a newly developed assay for monitoring trans-Sey1p complex assembly, a prerequisite for ER fusion, we found that assembly of trans-Sey1p complexes was increased by the deletion of LNP1 and decreased by the overexpression of Lnp1p, indicating that Lnp1p inhibits Sey1p-mediated fusion by interfering with assembly of trans-Sey1p complexes.

6.
Nat Commun ; 13(1): 5851, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36195619

RESUMO

TAPL is a lysosomal ATP-binding cassette transporter that translocates a broad spectrum of polypeptides from the cytoplasm into the lysosomal lumen. Here we report that, in addition to its well-known role as a peptide translocator, TAPL exhibits an ATP-dependent phosphatidylserine floppase activity that is the possible cause of its high basal ATPase activity and of the lack of coupling between ATP hydrolysis and peptide efflux. We also present the cryo-EM structures of mouse TAPL complexed with (i) phospholipid, (ii) cholesteryl hemisuccinate (CHS) and 9-mer peptide, and (iii) ADP·BeF3. The inward-facing structure reveals that F449 protrudes into the cylindrical transport pathway and divides it into a large hydrophilic central cavity and a sizable hydrophobic upper cavity. In the structure, the peptide binds to TAPL in horizontally-stretched fashion within the central cavity, while lipid molecules plug vertically into the upper cavity. Together, our results suggest that TAPL uses different mechanisms to function as a peptide translocase and a phosphatidylserine floppase.


Assuntos
Peptídeos , Fosfatidilserinas , Transportadores de Cassetes de Ligação de ATP/metabolismo , Difosfato de Adenosina/metabolismo , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Lisossomos/metabolismo , Camundongos , Peptídeos/química , Fosfatidilserinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA