Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
IEEE Int Conf Rehabil Robot ; 2023: 1-6, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37941170

RESUMO

Brain plasticity plays a significant role in functional recovery after stroke, but the specific benefits of hand rehabilitation robot therapy remain unclear. Evaluating the specific effects of hand rehabilitation robot therapy is crucial in understanding how it impacts brain activity and its relationship to rehabilitation outcomes. This study aimed to investigate the brain activity pattern during hand rehabilitation exercise using functional magnetic resonance imaging (fMRI), and to compare it before and after 3-week hand rehabilitation robot training. To evaluate it, an fMRI experimental environment was constructed to facilitate the same hand posture used in rehabilitation robot therapy. Two stroke survivors participated and the conjunction analysis results from fMRI scans showed that patient 1 exhibited a significant improvement in activation profile after hand rehabilitation robot training, indicative of improved motor function in the bilateral motor cortex. However, activation profile of patient 2 exhibited a slight decrease, potentially due to habituation to the rehabilitation task. Clinical results supported these findings, with patient 1 experiencing a greater increase in FMA score than patient 2. These results suggest that hand rehabilitation robot therapy can induce different brain activity patterns in stroke survivors, which may be linked to patient-specific training outcomes. Further studies with larger sample sizes are necessary to confirm these findings.


Assuntos
Córtex Motor , Robótica , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Robótica/métodos , Imageamento por Ressonância Magnética , Recuperação de Função Fisiológica/fisiologia
2.
J Neural Eng ; 19(5)2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-35985293

RESUMO

Objective. Reaching hand movement is an important motor skill actively examined in the brain-computer interface (BCI). Among the various components of movement analyzed is the hand's trajectory, which describes the hand's continuous positions in three-dimensional space. While a large body of studies have investigated the decoding of real movements and the reconstruction of real hand movement trajectories from neural signals, fewer studies have attempted to decode the trajectory of the imagined hand movement. To develop BCI systems for patients with hand motor dysfunctions, the systems essentially have to achieve movement-free control of external devices, which is only possible through successful decoding of purely imagined hand movement.Approach. To achieve this goal, this study used a machine learning technique (i.e. the variational Bayesian least square) to analyze the electrocorticogram (ECoG) of 18 epilepsy patients obtained from when they performed movement execution (ME) and kinesthetic movement imagination (KMI) of the reach-and-grasp hand action.Main results. The variational Bayesian decoding model was able to successfully predict the imagined trajectories of the hand movement significantly above the chance level. The Pearson's correlation coefficient between the imagined and predicted trajectories was 0.3393 and 0.4936 for the KMI (KMI trials only) and MEKMI paradigm (alternating trials of ME and KMI), respectively.Significance. This study demonstrated a high accuracy of prediction for the trajectories of imagined hand movement, and more importantly, a higher decoding accuracy of the imagined trajectories in the MEKMI paradigm compared to the KMI paradigm solely.


Assuntos
Interfaces Cérebro-Computador , Teorema de Bayes , Eletroencefalografia/métodos , Mãos , Humanos , Movimento
3.
IEEE Int Conf Rehabil Robot ; 2022: 1-6, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36176084

RESUMO

Rehabilitation of the hand motor function is essential for stroke patients to resume activities of daily living. Recent studies have shown that wearable robot systems, like a multi degree-of-freedom soft glove, have the potential to improve hand motor impairment. The rehabilitation system, which is intuitively controlled according to the user's intention, is expected to induce active participation of the user and further promote brain plasticity. However, due to the patient-specific nature of stroke patients, extracting the intention from stroke patients is still challenging. In this study, we implemented a classifier that combines EEG and EMG to detect chronic stroke patients' four types of intention: rest, grasp, hold, and release. Three chronic stroke patients participated in the experiment and performed rest, grasp, hold, and release actions. The rest vs. grasp binary classifier and release vs. hold binary classifier showed 76.9% and 86.6% classification accuracy in real-time, respectively. In addition, patient-specific accuracy comparisons showed that the hybrid approach was robust to upper limb impairment level compared to other approaches. We believe that these results could pave the way for the development of BCI-based robotic hand rehabilitation therapy.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Atividades Cotidianas , Eletroencefalografia/métodos , Mãos , Força da Mão , Humanos , Intenção , Reabilitação do Acidente Vascular Cerebral/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA