Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Med Imaging (Bellingham) ; 11(5): 054002, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39220049

RESUMO

Purpose: Interpreting echocardiographic exams requires substantial manual interaction as videos lack scan-plane information and have inconsistent image quality, ranging from clinically relevant to unrecognizable. Thus, a manual prerequisite step for analysis is to select the appropriate views that showcase both the target anatomy and optimal image quality. To automate this selection process, we present a method for automatic classification of routine views, recognition of unknown views, and quality assessment of detected views. Approach: We train a neural network for view classification and employ the logit activations from the neural network for unknown view recognition. Subsequently, we train a linear regression algorithm that uses feature embeddings from the neural network to predict view quality scores. We evaluate the method on a clinical test set of 2466 echocardiography videos with expert-annotated view labels and a subset of 438 videos with expert-rated view quality scores. A second observer annotated a subset of 894 videos, including all quality-rated videos. Results: The proposed method achieved an accuracy of 84.9 % ± 0.67 for the joint objective of routine view classification and unknown view recognition, whereas a second observer reached an accuracy of 87.6%. For view quality assessment, the method achieved a Spearman's rank correlation coefficient of 0.71, whereas a second observer reached a correlation coefficient of 0.62. Conclusion: The proposed method approaches expert-level performance, enabling fully automatic selection of the most appropriate views for manual or automatic downstream analysis.

2.
Sci Rep ; 13(1): 16875, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37803027

RESUMO

Label noise hampers supervised training of neural networks. However, data without label noise is often infeasible to attain, especially for medical tasks. Attaining high-quality medical labels would require a pool of experts and their consensus reading, which would be extremely costly. Several methods have been proposed to mitigate the adverse effects of label noise during training. State-of-the-art methods use multiple networks that exploit different decision boundaries to identify label noise. Among the best performing methods is co-teaching. However, co-teaching comes with the requirement of knowing label noise a priori. Hence, we propose a co-teaching method that does not require any prior knowledge about the level of label noise. We introduce stochasticity to select or reject training instances. We have extensively evaluated the method on synthetic experiments with extreme label noise levels and applied it to real-world medical problems of ECG classification and cardiac MRI segmentation. Results show that the approach is robust to its hyperparameter choice and applies to various classification tasks with unknown levels of label noise.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Humanos , Consenso , Conhecimento , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA