RESUMO
BACKGROUND: Proteasome-associated autoinflammatory syndromes (PRAASs) form a family of recently described rare autosomal recessive disorders of disturbed proteasome assembly and proteolytic activity caused by mutations in genes coding for proteasome subunits. The treatment options for these proteasome disorders consist of lifelong immunosuppressive drugs or Janus kinase inhibitors, which may have partial efficacy and noticeable side effects. Because proteasomes are ubiquitously expressed, it is unknown whether hematopoietic stem cell transplantation (HSCT) may be a sufficient treatment option. OBJECTIVE: Our aim was to report the case of a young boy with a treatment-resistant cutaneous vasculitis that was initially suspected to be associated with a gene variant in SH2D1A. METHODS: Whole-exome sequencing was performed to identify the genetic defect. Molecular and functional analyses were performed to assess the impact of variants on proteasomal function. The immune characterization led to the decision to perform HSCT on our patient and conduct follow-up over the 7-year period after the transplant. Because loss of myeloid chimerism after the first HSCT was associated with relapse of autoinflammation, a second HSCT was performed. RESULTS: After the successful second HSCT, the patient developed mild symptoms of lipodystrophy, which raised the suspicion of a PRAAS. Genetic analysis revealed 2 novel heterozygous variants in PSMB4 (encoding proteasomal subunit ß7). Retrospective analysis of patient cells stored before the first HSCT and patient cells obtained after the second HSCT demonstrated that HSCT successfully rescued proteasome function, restored protein homeostasis, and resolved the interferon-stimulated gene signature. Furthermore, successful HSCT alleviated the autoinflammatory manifestations in our patient. CONCLUSION: Patients with treatment-resistant PRAAS can be cured by HSCT.
Assuntos
Transplante de Células-Tronco Hematopoéticas , Lipodistrofia , Criança , Humanos , Lipodistrofia/genética , Masculino , Complexo de Endopeptidases do Proteassoma/genética , Estudos Retrospectivos , SíndromeRESUMO
Antibody production by the B cell compartment is a crucial part of the adaptive immune response. Dysregulated antibody production in the form of autoantibodies can cause autoimmune disease. To date, B-cell depletion with anti-CD20 antibodies is commonly applied in autoimmunity, but pre-existing plasma cells are not eliminated in this way. Alternative ways of more selective inhibition of antibody production would add to the treatment of these autoimmune diseases. To explore novel therapeutic targets in signaling pathways essential for plasmablast formation and/or immunoglobulin production, we performed a compound screen of almost 200 protein kinase inhibitors in a robust B-cell differentiation culture system. This study yielded 35 small cell-permeable compounds with a reproducible inhibitory effect on B-cell activation and plasmablast formation, among which was the clinically applied mammalian target of rapamycin (mTOR) inhibitor rapamycin. Two additional compounds targeting the phosphoinositide 3-kinase-AKT-mTOR pathway (BKM120 and WYE-354) did not affect proliferation and plasmablast formation, but specifically reduced the immunoglobulin production. With this compound screen we successfully applied a method to investigate therapeutic targets for B-cell differentiation and identified compounds in the phosphoinositide 3-kinase-AKT-mTOR pathway that could specifically inhibit immunoglobulin production only. These drugs may well be explored to be of value in current B-cell-depleting treatment regimens in autoimmune disorders.
Assuntos
Autoanticorpos/efeitos dos fármacos , Ativação Linfocitária/efeitos dos fármacos , Plasmócitos/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Aminopiridinas/farmacologia , Formação de Anticorpos/efeitos dos fármacos , Autoanticorpos/biossíntese , Doenças Autoimunes/imunologia , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Diferenciação Celular/efeitos dos fármacos , Descoberta de Drogas , Ensaios de Triagem em Larga Escala , Humanos , Morfolinas/farmacologia , Plasmócitos/imunologia , Purinas/farmacologia , Sirolimo/farmacologiaRESUMO
EXTL3 regulates the biosynthesis of heparan sulfate (HS), important for both skeletal development and hematopoiesis, through the formation of HS proteoglycans (HSPGs). By whole-exome sequencing, we identified homozygous missense mutations c.1382C>T, c.1537C>T, c.1970A>G, and c.2008T>G in EXTL3 in nine affected individuals from five unrelated families. Notably, we found the identical homozygous missense mutation c.1382C>T (p.Pro461Leu) in four affected individuals from two unrelated families. Affected individuals presented with variable skeletal abnormalities and neurodevelopmental defects. Severe combined immunodeficiency (SCID) with a complete absence of T cells was observed in three families. EXTL3 was most abundant in hematopoietic stem cells and early progenitor T cells, which is in line with a SCID phenotype at the level of early T cell development in the thymus. To provide further support for the hypothesis that mutations in EXTL3 cause a neuro-immuno-skeletal dysplasia syndrome, and to gain insight into the pathogenesis of the disorder, we analyzed the localization of EXTL3 in fibroblasts derived from affected individuals and determined glycosaminoglycan concentrations in these cells as well as in urine and blood. We observed abnormal glycosaminoglycan concentrations and increased concentrations of the non-sulfated chondroitin disaccharide D0a0 and the disaccharide D0a4 in serum and urine of all analyzed affected individuals. In summary, we show that biallelic mutations in EXTL3 disturb glycosaminoglycan synthesis and thus lead to a recognizable syndrome characterized by variable expression of skeletal, neurological, and immunological abnormalities.
Assuntos
Anormalidades Musculoesqueléticas/genética , N-Acetilglucosaminiltransferases/genética , Osteocondrodisplasias/genética , Alelos , Linhagem Celular , Linhagem Celular Tumoral , Condroitina/sangue , Condroitina/urina , Variações do Número de Cópias de DNA , Estudo de Associação Genômica Ampla , Glicosaminoglicanos/metabolismo , Humanos , Anormalidades Musculoesqueléticas/diagnóstico , Mutação de Sentido Incorreto , Osteocondrodisplasias/diagnóstico , Imunodeficiência Combinada Severa/diagnóstico , Imunodeficiência Combinada Severa/genéticaRESUMO
Genetic studies are identifying an increasing number of monogenic causes of Common Variable Immunodeficiency (CVID). Pathogenic variants in the C-terminus of NFKB2 have been identified in the subset of CVID patients whose immunodeficiency is associated with ectodermal dysplasia and central adrenal insufficiency. We describe 2 unrelated CVID pedigrees with 4 cases of pathogenic stop gain variants (c.1903Câ¯>â¯T) in the ankyrin repeat domain (ARD) of NF-κB2, leading to a premature truncation of the protein at p.Arg635Term (R635X). By immunophenotyping and functional ex vivo B- and T-cell experiments we characterized the variant by reduced class-switched memory B-cell counts and immature plasmablasts, unable to produce IgG and IgA. Features of a poor proliferative T-cell response and reduced expansion of CD4+CXCR5+ T cells was only observed in the two clinically affected index cases without any clear clinical correlate. In conclusion, pathogenic stop variants in the ARD of NFKB2 can cause 'infection-only' CVID with an abnormal B-cell phenotype and a variable clinical penetrance.
Assuntos
Linfócitos B/imunologia , Imunodeficiência de Variável Comum/imunologia , Mutação/genética , Subunidade p52 de NF-kappa B/genética , Linfócitos T/imunologia , Insuficiência Adrenal/congênito , Repetição de Anquirina/genética , Células Cultivadas , Imunodeficiência de Variável Comum/genética , Displasia Ectodérmica , Feminino , Humanos , Switching de Imunoglobulina/genética , Memória Imunológica , Imunofenotipagem , Ativação Linfocitária , Masculino , Linhagem , Receptores CXCR5/metabolismoRESUMO
BACKGROUND: The genetic cause of primary immunodeficiency disease (PID) carries prognostic information. OBJECTIVE: We conducted a whole-genome sequencing study assessing a large proportion of the NIHR BioResource-Rare Diseases cohort. METHODS: In the predominantly European study population of principally sporadic unrelated PID cases (n = 846), a novel Bayesian method identified nuclear factor κB subunit 1 (NFKB1) as one of the genes most strongly associated with PID, and the association was explained by 16 novel heterozygous truncating, missense, and gene deletion variants. This accounted for 4% of common variable immunodeficiency (CVID) cases (n = 390) in the cohort. Amino acid substitutions predicted to be pathogenic were assessed by means of analysis of structural protein data. Immunophenotyping, immunoblotting, and ex vivo stimulation of lymphocytes determined the functional effects of these variants. Detailed clinical and pedigree information was collected for genotype-phenotype cosegregation analyses. RESULTS: Both sporadic and familial cases demonstrated evidence of the noninfective complications of CVID, including massive lymphadenopathy (24%), unexplained splenomegaly (48%), and autoimmune disease (48%), features prior studies correlated with worse clinical prognosis. Although partial penetrance of clinical symptoms was noted in certain pedigrees, all carriers have a deficiency in B-lymphocyte differentiation. Detailed assessment of B-lymphocyte numbers, phenotype, and function identifies the presence of an increased CD21low B-cell population. Combined with identification of the disease-causing variant, this distinguishes between healthy subjects, asymptomatic carriers, and clinically affected cases. CONCLUSION: We show that heterozygous loss-of-function variants in NFKB1 are the most common known monogenic cause of CVID, which results in a temporally progressive defect in the formation of immunoglobulin-producing B cells.
Assuntos
Linfócitos B/imunologia , Imunodeficiência de Variável Comum/genética , Subunidade p50 de NF-kappa B/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Europa (Continente) , Feminino , Humanos , Lactente , Recém-Nascido , Mutação com Perda de Função , Masculino , Pessoa de Meia-Idade , Fenótipo , Linfócitos T/imunologia , Adulto JovemRESUMO
Aicardi-Goutières syndrome (AGS) is a monogenic inflammatory encephalopathy caused by mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR1, or MDA5. Mutations in those genes affect normal RNA/DNA intracellular metabolism and detection, triggering an autoimmune response with an increase in cerebral IFN-α production by astrocytes. Microangiopathy and vascular disease also contribute to the neuropathology in AGS. In this study, we report that AGS gene silencing of TREX1, SAMHD1, RNASEH2A, and ADAR1 by short hairpin RNAs in human neural stem cell-derived astrocytes, human primary astrocytes, and brain-derived endothelial cells leads to an antiviral status of these cells compared with nontarget short hairpin RNA-treated cells. We observed a distinct activation of the IFN-stimulated gene signature with a substantial increase in the release of proinflammatory cytokines (IL-6) and chemokines (CXCL10 and CCL5). A differential impact of AGS gene silencing was noted; silencing TREX1 gave rise to the most dramatic in both cell types. Our findings fit well with the observation that patients carrying mutations in TREX1 experience an earlier onset and fatal outcome. We provide in the present study, to our knowledge for the first time, insight into how astrocytic and endothelial activation of antiviral status may differentially lead to cerebral pathology, suggesting a rational link between proinflammatory mediators and disease severity in AGS.
Assuntos
Astrócitos/imunologia , Doenças Autoimunes do Sistema Nervoso/imunologia , Citocinas/imunologia , Células Endoteliais/imunologia , Interferon-alfa/imunologia , Malformações do Sistema Nervoso/imunologia , Células-Tronco Neurais/imunologia , Adenosina Desaminase/genética , Adenosina Desaminase/imunologia , Astrócitos/patologia , Doenças Autoimunes do Sistema Nervoso/genética , Doenças Autoimunes do Sistema Nervoso/mortalidade , Doenças Autoimunes do Sistema Nervoso/patologia , Citocinas/genética , Células Endoteliais/patologia , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/imunologia , Inativação Gênica , Células HEK293 , Humanos , Interferon-alfa/genética , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/imunologia , Mutação , Malformações do Sistema Nervoso/genética , Malformações do Sistema Nervoso/mortalidade , Malformações do Sistema Nervoso/patologia , Células-Tronco Neurais/patologia , Fosfoproteínas/genética , Fosfoproteínas/imunologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/imunologia , Ribonuclease H/genética , Ribonuclease H/imunologia , Proteína 1 com Domínio SAM e Domínio HDRESUMO
Primary antibody deficiencies (PADs) are the most common immunodeficiency in humans, characterized by low levels of immunoglobulins and inadequate antibody responses upon immunization. These PADs may result from an early block in B cell development with a complete absence of peripheral B cells and lack of immunoglobulins. In the presence of circulating B cells, some PADs are genetically caused by a class switch recombination (CSR) defect, but in the most common PAD, common variable immunodeficiency (CVID), very few gene defects have as yet been characterized despite various phenotypic classifications. Using a functional read-out, we previously identified a functional subgroup of CVID patients with plasmablasts (PBs) producing IgM only. We have now further characterized such CVID patients by a direct functional comparison with patients having genetically well-characterized CSR defects in CD40L, activation-induced cytidine deaminase (AID) and uracil N-glycosylase activity (UNG). The CSR-like CVID patients showed a failure in B cell activation patterns similar to the classical AID/UNG defects in three out of five CVID patients and distinct more individual defects in the two other CVID cases when tested for cellular activation and PB differentiation. Thus, functional categorization of B cell activation and differentiation pathways extends the expected variation in CVID to CSR-like defects of as yet unknown genetic etiology.
Assuntos
Imunodeficiência de Variável Comum/genética , Imunodeficiência de Variável Comum/imunologia , Switching de Imunoglobulina/genética , Switching de Imunoglobulina/imunologia , Fenótipo , Adolescente , Adulto , Linfócitos B/imunologia , Linfócitos B/metabolismo , Biomarcadores , Imunodeficiência de Variável Comum/diagnóstico , Feminino , Predisposição Genética para Doença , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Imunoglobulina M/sangue , Imunoglobulina M/imunologia , Imunofenotipagem , Ativação Linfocitária/imunologia , Masculino , Pessoa de Meia-Idade , Plasmócitos/imunologia , Plasmócitos/metabolismo , Plasmócitos/patologia , Adulto JovemRESUMO
OBJECTIVES: Aicardi-Goutières syndrome (AGS) is an autoimmune disorder that shares similarities with systemic lupus erythematous. AGS inflammatory responses specially target the cerebral white matter. However, it remains uncertain why the brain is the most affected organ, and little is known about the presence of autoantibodies in AGS. Here, we aim to profile specific autoantibodies in AGS and to determine whether these autoantibodies target cerebral epitopes. METHODS: Using a multiplex microarray, we assessed the spectrum of serum autoantibodies in 56 genetically confirmed patients with AGS. We investigated the presence of immunoglobulins in AGS brain specimens using immunohistochemistry and studied the reactivity of sera against brain epitopes with proteomics. RESULTS: Serum from patients exhibited high levels of IgGs against nuclear antigens (gP210, Nup62, PCNA, Ro/SSA, Sm/RNP complex, SS-A/SS-B), components of the basement membrane (entactin, laminin), fibrinogen IV and gliadin. Upon testing whether antibodies in AGS could be found in the central nervous system, IgGs were identified to target in vivo endothelial cells in vivo and astrocytes in brain sections of deceased patients with AGS. Using a proteomics approach, we were able to confirm that IgGs in serum samples from AGS patients bind epitopes present in the cerebral white matter. CONCLUSIONS: Patients with AGS produce a broad spectrum of autoantibodies unique from other autoimmune diseases. Some of these autoantibodies target endothelial cells and astrocytes in the brain of the affected patients, perhaps explaining the prominence of neurological disease in the AGS phenotype.
Assuntos
Autoanticorpos/análise , Doenças Autoimunes do Sistema Nervoso/imunologia , Encéfalo/imunologia , Malformações do Sistema Nervoso/imunologia , Adolescente , Adulto , Astrócitos/imunologia , Autoanticorpos/sangue , Autoantígenos/imunologia , Doenças Autoimunes/imunologia , Doenças Autoimunes do Sistema Nervoso/genética , Criança , Pré-Escolar , Endotélio Vascular/imunologia , Feminino , Genótipo , Humanos , Imunoglobulina G/análise , Imunoglobulina M/análise , Lactente , Recém-Nascido , Lúpus Eritematoso Sistêmico/imunologia , Masculino , Doença Mista do Tecido Conjuntivo/imunologia , Malformações do Sistema Nervoso/genética , Proteômica/métodos , Adulto JovemRESUMO
Caspase recruitment domain-containing protein 9 (CARD9) is an adaptor molecule in the cytosol of myeloid cells, required for induction of T-helper cells producing interleukin-17 (Th17 cells) and important in antifungal immunity. In a patient suffering from Candida dubliniensis meningoencephalitis, mutations in the CARD9 gene were found to result in the loss of protein expression. Apart from the reduced numbers of CD4(+) Th17 lymphocytes, we identified a lack of monocyte-derived cytokines in response to Candida strains. Importantly, CARD9-deficient neutrophils showed a selective Candida albicans killing defect with abnormal ultrastructural phagolysosomes and outgrowth of hyphae. The neutrophil killing defect was independent of the generation of reactive oxygen species by the reduced NAD phosphate oxidase system. Taken together, this demonstrates that human CARD9 deficiency results in selective defect in the host defense against invasive fungal infection, caused by an impaired phagocyte killing.
Assuntos
Proteínas Adaptadoras de Sinalização CARD/deficiência , Proteínas Adaptadoras de Sinalização CARD/genética , Candidíase Invasiva/imunologia , Neutrófilos/imunologia , Adolescente , Encefalopatias/diagnóstico , Encefalopatias/etiologia , Encefalopatias/imunologia , Proteínas Adaptadoras de Sinalização CARD/imunologia , Candida albicans/imunologia , Candida albicans/isolamento & purificação , Candidíase Invasiva/complicações , Candidíase Invasiva/genética , Células Cultivadas , Citofagocitose/genética , Citofagocitose/imunologia , Feminino , Humanos , Imunidade Inata/genética , Imunidade Inata/fisiologiaRESUMO
Primary immunodeficiencies consist to a large extent of B cell defects, as indicated by inadequate Ab levels or response upon immunization. Many B cell defects have not yet been well characterized. Our objective was to create reliable in vivo and in vitro assays to routinely analyze human B cell differentiation, proliferation, and Ig production and to define reference ranges for different age categories. The in vitro assays were applied to classify the developmental and/or functional B cell defects in patients previously diagnosed with common variable immunodeficiency. Apart from standard immunophenotyping of circulating human B cell subsets, an in vitro CFSE dilution assay was used for the assessment of proliferative capacity comparing T cell-dependent and T cell-independent B cell activation. Plasmablast/plasma cell differentiation was assessed by staining for CD20, CD38, and CD138, and measurement of in vitro Ig secretion. At young age, B cells proliferate upon in vitro activation, but neither differentiate nor produce IgG. These latter functions reached adult levels at 5 and 10 y of age for T cell-dependent versus T cell-independent stimulations, respectively. The capacity of B cells to differentiate into plasmablasts and to produce IgG appeared to be contained within the switched memory B cell pool. Using these assays, we could categorize common variable immunodeficiency patients into subgroups and identified a class-switch recombination defect caused by an UNG mutation in one of the patients. We defined age-related reference ranges for human B cell differentiation. Our findings indicate that in vivo B cell functionality can be tested in vitro and helps to diagnose suspected B cell defects.
Assuntos
Subpopulações de Linfócitos B/imunologia , Linfócitos B/imunologia , Imunodeficiência de Variável Comum/imunologia , Ativação Linfocitária/imunologia , Linfócitos T/imunologia , ADP-Ribosil Ciclase 1/análise , Adulto , Anticorpos/sangue , Antígenos CD20/análise , Subpopulações de Linfócitos B/classificação , Subpopulações de Linfócitos B/citologia , Linfócitos B/classificação , Linfócitos B/citologia , Diferenciação Celular/imunologia , Proliferação de Células , Células Cultivadas , Imunodeficiência de Variável Comum/classificação , Feminino , Humanos , Imunoglobulinas/biossíntese , Imunofenotipagem , Masculino , Valores de Referência , Sindecana-1/análiseAssuntos
Complexo 2-3 de Proteínas Relacionadas à Actina/deficiência , Síndromes de Imunodeficiência/genética , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Hipersensibilidade/genética , Hipersensibilidade/imunologia , Síndromes de Imunodeficiência/imunologia , Lactente , Infecções/genética , Infecções/imunologia , Inflamação/genética , Inflamação/imunologia , Masculino , MutaçãoRESUMO
Aicardi-Goutières syndrome is a genetically determined infantile encephalopathy, manifesting as progressive microcephaly, psychomotor retardation, and in â¼25% of patients, death in early childhood. Aicardi-Goutières syndrome is caused by mutations in any of the genes encoding TREX1, RNASEH2-A, -B, -C and SAMHD1, with protein dysfunction hypothesized to result in the accumulation of nucleic acids within the cell, thus triggering an autoinflammatory response with increased interferon-α production. Astrocytes have been identified as a major source of interferon-α production in the brains of patients with Aicardi-Goutières syndrome. Here, we study the effect of interferon-α treatment on astrocytes derived from immortalized human neural stem cells. Chronic interferon-α treatment promoted astrocyte activation and a reduction in cell proliferation. Moreover, chronic exposure resulted in an alteration of genes and proteins involved in the stability of white matter (ATF4, eIF2Bα, cathepsin D, cystatin F), an increase of antigen-presenting genes (human leukocyte antigen class I) and downregulation of pro-angiogenic factors and other cytokines (vascular endothelial growth factor and IL-1). Interestingly, withdrawal of interferon-α for 7 days barely reversed these cellular alterations, demonstrating that the interferon-α mediated effects persist over time. We confirmed our in vitro findings using brain samples from patients with Aicardi-Goutières syndrome. Our results support the idea of interferon-α as a key factor in the pathogenesis of Aicardi-Goutières syndrome relating to the observed leukodystrophy and microangiopathy. Because of the sustained interferon-α effect, even after withdrawal, therapeutic targets for Aicardi-Goutières syndrome, and other interferon-α-mediated encephalopathies, may include downstream interferon-α signalling cascade effectors rather than interferon-α alone.
Assuntos
Astrócitos/efeitos dos fármacos , Doenças Autoimunes do Sistema Nervoso/genética , Interferon-alfa/farmacologia , Malformações do Sistema Nervoso/genética , Adolescente , Adulto , Idoso de 80 Anos ou mais , Astrócitos/imunologia , Doenças Autoimunes do Sistema Nervoso/imunologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/imunologia , Proliferação de Células/efeitos dos fármacos , Criança , Pré-Escolar , Feminino , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/imunologia , Gliose/imunologia , Humanos , Masculino , Malformações do Sistema Nervoso/imunologia , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/imunologiaRESUMO
Mutations in the DOCK8 gene define the most common form of autosomal-recessive Hyper-IgE-syndrome (AR-HIES/OMIM#243700). In a patient with extensive molluscum contagiosum lesions, a homozygous DOCK8 gene deletion was demonstrated. In-vivo 18-FDG uptake showed multiple non-enlarged lymph nodes without uptake in the spleen. Lymph node biopsies for subsequent immunohistochemistry showed clear differences with the mouse model of DOCK8 deficiency in which these mice show no GCs. Unexpectedly, the patient's lymph nodes demonstrated lymphocyte polyclonality, follicular hyperplasia and an unusual IgE(+) plasma cell expansion. In contrast, the proliferative capacity of circulating B-cells was almost absent with little in-vitro Ig production or plasmablast formation. Also the T-cell proliferation indicated a partial defect. Hematopoietic stem cell transplantation (HSCT) was performed resulting in the disappearance of the molluscum contagiosum lesions. In sum, DOCK8 deficiency results in defective antibody responses and undirected plasma cell expansion in the lymph nodes, as part of a combined immunodeficiency cured by HSCT.
Assuntos
Fatores de Troca do Nucleotídeo Guanina/deficiência , Síndromes de Imunodeficiência/imunologia , Molusco Contagioso/imunologia , Adolescente , Anticorpos/imunologia , Linfócitos B/imunologia , Linfócitos B/patologia , Proliferação de Células , Feminino , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/imunologia , Transplante de Células-Tronco Hematopoéticas , Humanos , Hiperplasia/genética , Hiperplasia/imunologia , Hiperplasia/patologia , Hiperplasia/terapia , Imunidade Humoral , Síndromes de Imunodeficiência/genética , Síndromes de Imunodeficiência/patologia , Síndromes de Imunodeficiência/terapia , Linfonodos/patologia , Contagem de Linfócitos , Molusco Contagioso/genética , Molusco Contagioso/patologia , Molusco Contagioso/terapia , Linfócitos T/imunologia , Linfócitos T/patologiaRESUMO
A girl presented during childhood with a single course of extensive chickenpox and moderate albeit recurrent pneumonia in the presence of idiopathic CD4+ T lymphocytopenia (ICL). Her clinical condition remained stable over the past 10 years without infections, any granulomatous disease, or autoimmunity. Immunophenotyping demonstrated strongly reduced naive T and B cells with intact proliferative capacity. Antibody reactivity on in vivo immunizations was normal. T-cell receptor-Vß repertoire was polyclonal with a very low content of T-cell receptor excision circles (TRECs). Kappa-deleting recombination excision circles (KRECs) were also abnormal in the B cells. Both reflect extensive in vivo proliferation. Patient-derived CD34+ hematopoietic stem cells could not repopulate RAG2(-/-)IL2Rγc(-/-) mice, indicating the lymphoid origin of the defect. We identified 2 novel missense mutations in RAG1 (p.Arg474Cys and p.Leu506Phe) resulting in reduced RAG activity. This report gives the first genetic clue for ICL and extends the clinical spectrum of RAG mutations from severe immune defects to an almost normal condition.
Assuntos
Autoimunidade , Linfócitos T CD4-Positivos/imunologia , Doença Granulomatosa Crônica/imunologia , Proteínas de Homeodomínio/genética , Mutação/genética , T-Linfocitopenia Idiopática CD4-Positiva/genética , T-Linfocitopenia Idiopática CD4-Positiva/imunologia , Sequência de Aminoácidos , Animais , Células Cultivadas , Pré-Escolar , Proteínas de Ligação a DNA/fisiologia , Feminino , Humanos , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Receptores de Interleucina-2/fisiologia , Homologia de Sequência de AminoácidosRESUMO
Mutations in the common gamma chain (γc, CD132, encoded by the IL2RG gene) can lead to B(+)T(-)NK(-) X-linked severe combined immunodeficiency, as a consequence of unresponsiveness to γc-cytokines such as interleukins-2, -7 and -15. Hypomorphic mutations in CD132 may cause combined immunodeficiencies with a variety of clinical presentations. We analyzed peripheral blood mononuclear cells of a 6-year-old boy with normal lymphocyte counts, who suffered from recurrent pneumonia and disseminated mollusca contagiosa. Since proliferative responses of T cells and NK cells to γc -cytokines were severely impaired, we performed IL2RG gene analysis, showing a heterozygous mutation in the presence of a single X-chromosome. Interestingly, an IL2RG reversion to normal predominated in both naïve and antigen-primed CD8(+) T cells and increased over time. Only the revertant CD8(+) T cells showed normal expression of CD132 and the various CD8(+) T cell populations had a different T-cell receptor repertoire. Finally, a fraction of γδ(+) T cells and differentiated CD4(+)CD27(-) effector-memory T cells carried the reversion, whereas NK or B cells were repeatedly negative. In conclusion, in a patient with a novel IL2RG mutation, gene-reverted CD8(+) T cells accumulated over time. Our data indicate that selective outgrowth of particular T-cell subsets may occur following reversion at the level of committed T progenitor cells.
Assuntos
Linfócitos T CD8-Positivos/fisiologia , Subunidade gama Comum de Receptores de Interleucina/genética , Mutação/genética , Imunodeficiência Combinada Severa/genética , Linfócitos T CD8-Positivos/patologia , Proliferação de Células , Criança , Humanos , Subunidade gama Comum de Receptores de Interleucina/fisiologia , Contagem de Linfócitos , Masculino , Linhagem , Imunodeficiência Combinada Severa/diagnóstico , Imunodeficiência Combinada Severa/patologiaRESUMO
B cell-targeted therapies, such as CD20-targeting mAbs, deplete B cells but do not target the autoantibody-producing plasma cells (PCs). PC-targeting therapies such as daratumumab (anti-CD38) form an attractive approach to treat PC-mediated diseases. CD38 possesses enzymatic and receptor capabilities, which may impact a range of cellular processes including proliferation and differentiation. However, very little is known whether and how CD38 targeting affects B-cell differentiation, in particular for humans beyond cancer settings. Using in-depth in vitro B-cell differentiation assays and signaling pathway analysis, we show that CD38 targeting with daratumumab demonstrated a significant decrease in proliferation, differentiation, and IgG production upon T cell-dependent B-cell stimulation. We found no effect on T-cell activation or proliferation. Furthermore, we demonstrate that daratumumab attenuated the activation of NF-κB in B cells and the transcription of NF-κB-targeted genes. When culturing sorted B-cell subsets with daratumumab, the switched memory B-cell subset was primarily affected. Overall, these in vitro data elucidate novel non-depleting mechanisms by which daratumumab can disturb humoral immune responses. Affecting memory B cells, daratumumab may be used as a therapeutic approach in B cell-mediated diseases other than the currently targeted malignancies.
Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , ADP-Ribosil Ciclase 1/genética , ADP-Ribosil Ciclase 1/metabolismo , NF-kappa B , Diferenciação CelularRESUMO
BACKGROUND: Children with SARS-CoV-2 related Multisystem Inflammatory Syndrome in Children (MIS-C) often present with clinical features that resemble Kawasaki disease (KD). Disease severity in adult COVID-19 is associated to the presence of anti-cytokine autoantibodies (ACAAs) against type I interferons. Similarly, ACAAs may be implicated in KD and MIS-C. Therefore, we explored the immunological response, presence of ACAAs and disease correlates in both disorders. METHODS: Eighteen inflammatory plasma protein levels and seven ACAAs were measured in KD (n = 216) and MIS-C (n = 56) longitudinally by Luminex and/or ELISA. Levels (up to 1 year post-onset) of these proteins were related to clinical data and compared with healthy paediatric controls. FINDINGS: ACAAs were found in both patient groups. The presence of ACAAs lagged behind the inflammatory plasma proteins and peaked in the subacute phase. ACAAs were mostly directed against IFN-γ (>80%) and were partially neutralising at best. KD presented with a higher variety of ACAAs than MIS-C. Increased levels of anti-IL-17A (P = 0·02) and anti-IL-22 (P = 0·01) were inversely associated with ICU admission in MIS-C. Except for CXCL10 in MIS-C (P = 0·002), inflammatory plasma proteins were elevated in both KD and MIS-C. Endothelial angiopoietin-2 levels were associated with coronary artery aneurysms in KD (P = 0·02); and sCD25 (P = 0·009), angiopoietin-2 (P = 0·001), soluble IL-33-receptor (ST2, P = 0·01) and CXCL10 (P = 0·02) with ICU admission in MIS-C. INTERPRETATION: Markers of endothelial activation (E-selectin, angiopoietin-2), and innate and adaptive immune responses (macrophages [CD163, G-CSF], neutrophils [lipocalin-2], and T cells [IFN-γ, CXCL10, IL-6, IL-17]), are upregulated in KD and MIS-C. ACAAs were detected in both diseases and, although only partly neutralising, their transient presence and increased levels in non-ICU patients may suggest a dampening role on inflammation. FUNDING: The Kawasaki study is funded by the Dutch foundation Fonds Kind & Handicap and an anonymous donor. The sponsors had no role in the study design, analysis, or decision for publication.
Assuntos
COVID-19 , Síndrome de Linfonodos Mucocutâneos , Adulto , Humanos , Criança , Citocinas , Síndrome de Linfonodos Mucocutâneos/complicações , Síndrome de Linfonodos Mucocutâneos/diagnóstico , Angiopoietina-2 , Estudos de Coortes , SARS-CoV-2 , AutoanticorposRESUMO
BACKGROUND: Differentiating between self-resolving viral infections and bacterial infections in children who are febrile is a common challenge, causing difficulties in identifying which individuals require antibiotics. Studying the host response to infection can provide useful insights and can lead to the identification of biomarkers of infection with diagnostic potential. This study aimed to identify host protein biomarkers for future development into an accurate, rapid point-of-care test that can distinguish between bacterial and viral infections, by recruiting children presenting to health-care settings with fever or a history of fever in the previous 72 h. METHODS: In this multi-cohort machine learning study, patient data were taken from EUCLIDS, the Swiss Pediatric Sepsis study, the GENDRES study, and the PERFORM study, which were all based in Europe. We generated three high-dimensional proteomic datasets (SomaScan and two via liquid chromatography tandem mass spectrometry, referred to as MS-A and MS-B) using targeted and untargeted platforms (SomaScan and liquid chromatography mass spectrometry). Protein biomarkers were then shortlisted using differential abundance analysis, feature selection using forward selection-partial least squares (FS-PLS; 100 iterations), along with a literature search. Identified proteins were tested with Luminex and ELISA and iterative FS-PLS was done again (25 iterations) on the Luminex results alone, and the Luminex and ELISA results together. A sparse protein signature for distinguishing between bacterial and viral infections was identified from the selected proteins. The performance of this signature was finally tested using Luminex assays and by calculating disease risk scores. FINDINGS: 376 children provided serum or plasma samples for use in the discovery of protein biomarkers. 79 serum samples were collected for the generation of the SomaScan dataset, 147 plasma samples for the MS-A dataset, and 150 plasma samples for the MS-B dataset. Differential abundance analysis, and the first round of feature selection using FS-PLS identified 35 protein biomarker candidates, of which 13 had commercial ELISA or Luminex tests available. 16 proteins with ELISA or Luminex tests available were identified by literature review. Further evaluation via Luminex and ELISA and the second round of feature selection using FS-PLS revealed a six-protein signature: three of the included proteins are elevated in bacterial infections (SELE, NGAL, and IFN-γ), and three are elevated in viral infections (IL18, NCAM1, and LG3BP). Performance testing of the signature using Luminex assays revealed area under the receiver operating characteristic curve values between 89·4% and 93·6%. INTERPRETATION: This study has led to the identification of a protein signature that could be ultimately developed into a blood-based point-of-care diagnostic test for rapidly diagnosing bacterial and viral infections in febrile children. Such a test has the potential to greatly improve care of children who are febrile, ensuring that the correct individuals receive antibiotics. FUNDING: European Union's Horizon 2020 research and innovation programme, the European Union's Seventh Framework Programme (EUCLIDS), Imperial Biomedical Research Centre of the National Institute for Health Research, the Wellcome Trust and Medical Research Foundation, Instituto de Salud Carlos III, Consorcio Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Grupos de Refeencia Competitiva, Swiss State Secretariat for Education, Research and Innovation.
Assuntos
Infecções Bacterianas , Viroses , Humanos , Criança , Proteômica , Infecções Bacterianas/diagnóstico , Biomarcadores/metabolismo , Viroses/diagnóstico , AntibacterianosRESUMO
Tumor necrosis factor receptor-associated factor 3 (TRAF3) is a central regulator of immunity. TRAF3 is often somatically mutated in B cell malignancies, but its role in human immunity is not defined. Here, in five unrelated families, we describe an immune dysregulation syndrome of recurrent bacterial infections, autoimmunity, systemic inflammation, B cell lymphoproliferation, and hypergammaglobulinemia. Affected individuals each had monoallelic mutations in TRAF3 that reduced TRAF3 expression. Immunophenotyping showed that patients' B cells were dysregulated, exhibiting increased nuclear factor-κB 2 activation, elevated mitochondrial respiration, and heightened inflammatory responses. Patients had mild CD4+ T cell lymphopenia, with a reduced proportion of naïve T cells but increased regulatory T cells and circulating T follicular helper cells. Guided by this clinical phenotype, targeted analyses demonstrated that common genetic variants, which also reduce TRAF3 expression, are associated with an increased risk of B cell malignancies, systemic lupus erythematosus, higher immunoglobulin levels, and bacterial infections in the wider population. Reduced TRAF3 conveys disease risks by driving B cell hyperactivity via intrinsic activation of multiple intracellular proinflammatory pathways and increased mitochondrial respiration, with a likely contribution from dysregulated T cell help. Thus, we define monogenic TRAF3 haploinsufficiency syndrome and demonstrate how common TRAF3 variants affect a range of human diseases.
Assuntos
Neoplasias , Fator 3 Associado a Receptor de TNF , Autoimunidade/genética , Linfócitos B , Humanos , Mutação , Neoplasias/patologia , Fator 3 Associado a Receptor de TNF/genética , Fator 3 Associado a Receptor de TNF/metabolismoRESUMO
Neutrophils are particularly well known for their antimicrobial function. Although historically they are regarded as strictly a phagocyte of the innate immune system, over time it has become clear that neutrophils are versatile cells with numerous functions including innate and adaptive immune regulation. We have previously described a role for human neutrophils in antibody-mediated red blood cell (RBC) clearance. Under homeostatic conditions, neutrophils do not take up RBCs. Yet, when RBCs are immunoglobulin G (IgG) opsonized, which can occur in alloimmunization or autoimmunization reactions, neutrophils can effectively phagocytose RBCs. In the present study, we show that human neutrophils acquire an antigen-presenting cell (APC) phenotype following RBC phagocytosis. Subsequent to RBC phagocytosis, neutrophils expressed major histocompatibility complex class II (MHC-II) and costimulatory molecules such as CD40 and CD80. Moreover, in classical APCs, the respiratory burst is known to regulate antigen presentation. We found that the respiratory burst in neutrophils is reduced after IgG-mediated RBC phagocytosis. Additionally, following RBC phagocytosis, neutrophils were demonstrated to elicit an antigen-specific T-cell response, using tetanus toxoid (TT) as an antigen to elicit an autologous TT-specific CD4+ T-cell response. Lastly, although the "don't eat me" signal CD47 is known to have a powerful restrictive role in the activation of immunity against RBCs in dendritic cells, CD47 does not seem to have a significant effect on the antigen-presenting function of neutrophils in this context. Overall, these findings reveal that besides their classical antimicrobial role, neutrophils show plasticity in their phenotype.