Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 298(3): 101608, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35065073

RESUMO

A major barrier to successful pancreatic cancer (PC) treatment is the surrounding stroma, which secretes growth factors/cytokines that promote PC progression. Wnt and tenascin C (TnC) are key ligands secreted by stromal pancreatic stellate cells (PSCs) that then act on PC cells in a paracrine manner to activate the oncogenic ß-catenin and YAP/TAZ signaling pathways. Therefore, therapies targeting oncogenic Wnt/TnC cross talk between PC cells and PSCs constitute a promising new therapeutic approach for PC treatment. The metastasis suppressor N-myc downstream-regulated gene-1 (NDRG1) inhibits tumor progression and metastasis in numerous cancers, including PC. We demonstrate herein that targeting NDRG1 using the clinically trialed anticancer agent di-2-pyridylketone-4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC) inhibited Wnt/TnC-mediated interactions between PC cells and the surrounding PSCs. Mechanistically, NDRG1 and DpC markedly inhibit secretion of Wnt3a and TnC by PSCs, while also attenuating Wnt/ß-catenin and YAP/TAZ activation and downstream signaling in PC cells. This antioncogenic activity was mediated by direct inhibition of ß-catenin and YAP/TAZ nuclear localization and by increasing the Wnt inhibitor, DKK1. Expression of NDRG1 also inhibited transforming growth factor (TGF)-ß secretion by PC cells, a key mechanism by which PC cells activate PSCs. Using an in vivo orthotopic PC mouse model, we show DpC downregulated ß-catenin, TnC, and YAP/TAZ, while potently increasing NDRG1 expression in PC tumors. We conclude that NDRG1 and DpC inhibit Wnt/TnC-mediated interactions between PC cells and PSCs. These results further illuminate the antioncogenic mechanism of NDRG1 and the potential of targeting this metastasis suppressor to overcome the oncogenic effects of the PC-PSC interaction.


Assuntos
Comunicação Celular , Proteínas de Ciclo Celular , Peptídeos e Proteínas de Sinalização Intracelular , Neoplasias Pancreáticas , Células Estreladas do Pâncreas , Tenascina , beta Catenina , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Metástase Neoplásica , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Células Estreladas do Pâncreas/metabolismo , Células Estreladas do Pâncreas/patologia , Tenascina/genética , Tenascina/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Neoplasias Pancreáticas
2.
Pharmacol Res ; 193: 106806, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37244387

RESUMO

The estrogen receptor-α (ER-α) is a key driver of breast cancer (BC) and the ER-antagonist, tamoxifen, is a central pillar of BC treatment. However, cross-talk between ER-α, other hormone and growth factor receptors enables development of de novo resistance to tamoxifen. Herein, we mechanistically dissect the activity of a new class of anti-cancer agents that inhibit multiple growth factor receptors and down-stream signaling for the treatment of ER-positive BC. Using RNA sequencing and comprehensive protein expression analysis, we examined the activity of di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT) and di-2-pyridylketone-4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC), on the expression and activation of hormone and growth factor receptors, co-factors, and key resistance pathways in ER-α-positive BC. DpC differentially regulated 106 estrogen-response genes, and this was linked to decreased mRNA levels of 4 central hormone receptors involved in BC pathogenesis, namely ER, progesterone receptor (PR), androgen receptor (AR), and prolactin receptor (PRL-R). Mechanistic investigation demonstrated that due to DpC and Dp44mT binding metal ions, these agents caused a pronounced decrease in ER-α, AR, PR, and PRL-R protein expression. DpC and Dp44mT also inhibited activation and down-stream signaling of the epidermal growth factor (EGF) family receptors, and expression of co-factors that promote ER-α transcriptional activity, including SRC3, NF-κB p65, and SP1. In vivo, DpC was highly tolerable and effectively inhibited ER-α-positive BC growth. Through bespoke, non-hormonal, multi-modal mechanisms, Dp44mT and DpC decrease the expression of PR, AR, PRL-R, and tyrosine kinases that act with ER-α to promote BC, constituting an innovative therapeutic approach.


Assuntos
Neoplasias da Mama , Tiossemicarbazonas , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Progesterona/uso terapêutico , Androgênios/uso terapêutico , Receptores da Prolactina , Prolactina/uso terapêutico , Tamoxifeno/farmacologia , Tiossemicarbazonas/farmacologia , Tiossemicarbazonas/uso terapêutico , Receptores ErbB , Estrogênios/uso terapêutico
3.
FASEB J ; 35(2): e21347, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33484481

RESUMO

Pancreatic cancer (PaCa) is characterized by dense stroma that hinders treatment efficacy, with pancreatic stellate cells (PSCs) being a major contributor to this stromal barrier and PaCa progression. Activated PSCs release hepatocyte growth factor (HGF) and insulin-like growth factor (IGF-1) that induce PaCa proliferation, metastasis and resistance to chemotherapy. We demonstrate for the first time that the metastasis suppressor, N-myc downstream regulated gene 1 (NDRG1), is a potent inhibitor of the PaCa-PSC cross-talk, leading to inhibition of HGF and IGF-1 signaling. NDRG1 also potently reduced the key driver of PaCa metastasis, namely GLI1, leading to reduced PSC-mediated cell migration. The novel clinically trialed anticancer agent, di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC), which upregulates NDRG1, potently de-sensitized PaCa cells to ligands secreted by activated PSCs. DpC and NDRG1 also inhibited the PaCa-mediated activation of PSCs via inhibition of sonic hedgehog (SHH) signaling. In vivo, DpC markedly reduced PaCa tumor growth and metastasis more avidly than the standard chemotherapy for this disease, gemcitabine. Uniquely, DpC was selectively cytotoxic against PaCa cells, while "re-programming" PSCs to an inactive state, decreasing collagen deposition and desmoplasia. Thus, targeting NDRG1 can effectively break the oncogenic cycle of PaCa-PSC bi-directional cross-talk to overcome PaCa desmoplasia and improve therapeutic outcomes.


Assuntos
Adenocarcinoma/metabolismo , Proteínas de Ciclo Celular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Pancreáticas/metabolismo , Células Estromais/metabolismo , Adenocarcinoma/patologia , Animais , Antineoplásicos/toxicidade , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Proteínas Hedgehog/metabolismo , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Pancreáticas/patologia , Piridinas/toxicidade , Células Estromais/efeitos dos fármacos , Tiossemicarbazonas/toxicidade , Proteína GLI1 em Dedos de Zinco/metabolismo
4.
Pharmacol Res ; 175: 106006, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34843961

RESUMO

Triple negative breast cancer (TNBC) is the most aggressive type of breast cancers which constitutes about 15% of all breast cancer cases and characterized by negative expression of hormonal receptors and human epidermal growth factor receptor 2 (HER2). Thus, endocrine and HER2 targeted therapies are not effective toward TNBCs, and they mainly rely on chemotherapy and surgery for treatment. Despite recent advances in chemotherapy, 40% of TNBC patients develop a metastatic relapse and recurrence. Therefore, understanding the molecular profile of TNBC is warranted to identify targets that can be selected for the development of a new and effective therapeutic approach. Autophagy is an internal defensive mechanism that allows the cells to survive under different stressors. It has been well known that autophagy exerts a crucial role in cancer progression. The critical role of autophagy in TNBC progression is emerging in recent years. This review will discuss autophagic pathway, how autophagy affects TNBC progression and recent therapeutic approaches that can target autophagy as a new treatment modality.


Assuntos
Autofagia , Neoplasias de Mama Triplo Negativas , Animais , Antineoplásicos/uso terapêutico , Autofagia/efeitos dos fármacos , Feminino , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
5.
J Biol Chem ; 295(2): 481-503, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31744884

RESUMO

Considering the role of proto-oncogene c-Met (c-Met) in oncogenesis, we examined the effects of the metastasis suppressor, N-myc downstream-regulated gene-1 (NDRG1), and two NDRG1-inducing thiosemicarbazone-based agents, Dp44mT and DpC, on c-Met expression in DU145 and Huh7 cells. NDRG1 silencing without Dp44mT and DpC up-regulated c-Met expression, demonstrating that NDRG1 modulates c-Met levels. Dp44mT and DpC up-regulated NDRG1 by an iron-dependent mechanism and decreased c-Met levels, c-Met phosphorylation, and phosphorylation of its downstream effector, GRB2-associated binding protein 1 (GAB1). However, incubation with Dp44mT and DpC after NDRG1 silencing or silencing of the receptor tyrosine kinase inhibitor, mitogen-inducible gene 6 (MIG6), decreased c-Met and its phosphorylation, suggesting NDRG1- and MIG6-independent mechanism(s). Lysosomal inhibitors rescued the Dp44mT- and DpC-mediated c-Met down-regulation in DU145 cells. Confocal microscopy revealed that lysosomotropic agents and the thiosemicarbazones significantly increased co-localization between c-Met and lysosomal-associated membrane protein 2 (LAMP2). Moreover, generation of c-Met C-terminal fragment (CTF) and its intracellular domain (ICD) suggested metalloprotease-mediated cleavage. In fact, Dp44mT increased c-Met CTF while decreasing the ICD. Dp44mT and a γ-secretase inhibitor increased cellular c-Met CTF levels, suggesting that Dp44mT induces c-Met CTF levels by increasing metalloprotease activity. The broad metalloprotease inhibitors, EDTA and batimastat, partially prevented Dp44mT-mediated down-regulation of c-Met. In contrast, the ADAM inhibitor, TIMP metallopeptidase inhibitor 3 (TIMP-3), had no such effect, suggesting c-Met cleavage by another metalloprotease. Notably, Dp44mT did not induce extracellular c-Met shedding that could decrease c-Met levels. In summary, the thiosemicarbazones Dp44mT and DpC effectively inhibit oncogenic c-Met through lysosomal degradation and metalloprotease-mediated cleavage.


Assuntos
Antineoplásicos/farmacologia , Regulação para Baixo/efeitos dos fármacos , Lisossomos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-met/genética , Tiossemicarbazonas/farmacologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Lisossomos/genética , Lisossomos/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Proteólise/efeitos dos fármacos , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-met/metabolismo
6.
FASEB J ; 34(9): 11511-11528, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32713076

RESUMO

The androgen receptor (AR) is a major driver of prostate cancer (PCa) and a key therapeutic target for AR inhibitors (ie, Enzalutamide). However, Enzalutamide only inhibits androgen-dependent AR signaling, enabling intrinsic AR activation via androgen-independent pathways, leading to aggressive castration-resistant PCa (CRPC). We investigated the ability of novel anti-cancer agents, Dp44mT and DpC, to overcome androgen resistance. The effect of Dp44mT and DpC on androgen-dependent and independent AR signaling was assessed in androgen-dependent and -independent PCa cells using 2D- and 3D-tissue culture. The clinically trialed DpC was then examined in vivo and compared to Enzalutamide. These agents uniquely promote AR proteasomal degradation and inhibit AR transcription in PCa cells via the upregulation of c-Jun, potently reducing the AR target, prostate-specific antigen (PSA). These agents also inhibited the activation of key molecules in both androgen-dependent and independent AR signaling (ie, EGFR, MAPK, PI3K), which promote CRPC. The clinically trialed DpC also significantly inhibited PCa tumor growth, AR, and PSA expression in vivo, being more potent than Enzalutamide. DpC is a promising candidate for a unique, structurally distinct generation of AR inhibitors that simultaneously target both androgen-dependent and independent arms of AR signaling. No other therapies exhibit such comprehensive and potent AR suppression, which is critical for overcoming the development of androgen resistance.


Assuntos
Androgênios/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Hormônio-Dependentes/metabolismo , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tiossemicarbazonas/farmacologia , Androgênios/farmacologia , Animais , Antineoplásicos/farmacologia , Benzamidas , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Hormônio-Dependentes/tratamento farmacológico , Neoplasias Hormônio-Dependentes/genética , Nitrilas , Feniltioidantoína/análogos & derivados , Feniltioidantoína/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Receptores Androgênicos/genética , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
7.
J Biol Chem ; 293(10): 3562-3587, 2018 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-29305422

RESUMO

Multidrug resistance (MDR) is a major obstacle in cancer treatment due to the ability of tumor cells to efflux chemotherapeutics via drug transporters (e.g. P-glycoprotein (Pgp; ABCB1)). Although the mechanism of Pgp-mediated drug efflux is known at the plasma membrane, the functional role of intracellular Pgp is unclear. Moreover, there has been intense focus on the tumor micro-environment as a target for cancer treatment. This investigation aimed to dissect the effects of tumor micro-environmental stress on subcellular Pgp expression, localization, and its role in MDR. These studies demonstrated that tumor micro-environment stressors (i.e. nutrient starvation, low glucose levels, reactive oxygen species, and hypoxia) induce Pgp-mediated drug resistance. This occurred by two mechanisms, where stressors induced 1) rapid Pgp internalization and redistribution via intracellular trafficking (within 1 h) and 2) hypoxia-inducible factor-1α expression after longer incubations (4-24 h), which up-regulated Pgp and was accompanied by lysosomal biogenesis. These two mechanisms increased lysosomal Pgp and facilitated lysosomal accumulation of the Pgp substrate, doxorubicin, resulting in resistance. This was consistent with lysosomal Pgp being capable of transporting substrates into lysosomes. Hence, tumor micro-environmental stressors result in: 1) Pgp redistribution to lysosomes; 2) increased Pgp expression; 3) lysosomal biogenesis; and 4) potentiation of Pgp substrate transport into lysosomes. In contrast to doxorubicin, when stress stimuli increased lysosomal accumulation of the cytotoxic Pgp substrate, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), this resulted in the agent overcoming resistance. Overall, this investigation describes a novel approach to overcoming resistance in the stressful tumor micro-environment.


Assuntos
Antineoplásicos/farmacologia , Lisossomos/efeitos dos fármacos , Modelos Biológicos , Neoplasias/tratamento farmacológico , Tiossemicarbazonas/farmacologia , Microambiente Tumoral/efeitos dos fármacos , Subfamília B de Transportador de Cassetes de Ligação de ATP/agonistas , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Acridinas/farmacologia , Antineoplásicos/metabolismo , Apoptose/efeitos dos fármacos , Transporte Biológico/efeitos dos fármacos , Hipóxia Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Doxorrubicina/metabolismo , Doxorrubicina/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/agonistas , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Lisossomos/metabolismo , Proteínas de Neoplasias/agonistas , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Biogênese de Organelas , Transporte Proteico/efeitos dos fármacos , Interferência de RNA , Tetra-Hidroisoquinolinas/farmacologia
8.
Pharmacol Res ; 139: 298-313, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30453033

RESUMO

Mitochondria play vital roles in various cellular processes, ranging from cellular metabolism to signal transduction and cell death regulation. As these properties are critical for cancer growth, the mitochondrion has recently become an attractive target for anti-cancer therapies. In addition, it has come to light that mitochondria are crucially involved in the regulation of stem cell identity, differentiation and fate. A similar role for mitochondria has been also demonstrated in malignant stem-like cells termed cancer stem cells (CSCs), which are implicated in progression and resistance of many tumors. In this review, we summarize different mitochondrial functions reported to promote acquisition and maintenance of CSC phenotype and discuss the rationale for their therapeutic targeting. Particular emphasis is given to therapeutics that act directly through modulation of these mitochondrial functions and have recently emerged as promising anti-CSC drugs in pre-clinical studies. This review highlights the intriguing aspects of mitochondrial biology that may have a crucial role in cancer initiation, progression, and resistance and which might facilitate pharmacological targeting. Indeed, understanding of mitochondrial function in the regulation of CSCs will promote the development of novel CSC-targeted therapeutic strategies, which could significantly improve the long-term survival of cancer patients.


Assuntos
Mitocôndrias/fisiologia , Células-Tronco Neoplásicas/fisiologia , Animais , Antineoplásicos/farmacologia , Humanos , Mitocôndrias/efeitos dos fármacos
9.
Biochim Biophys Acta Mol Basis Dis ; 1864(8): 2644-2663, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29679718

RESUMO

The metastasis suppressor, N-myc downstream regulated gene-1 (NDRG1), exhibits pleiotropic activity, inhibiting metastasis of various tumor-types, while being correlated with metastasis in others. Notably, NDRG1 phosphorylation and cleavage are associated with its function, although it is unclear if these modifications occur universally, or selectively, in different cancer cell-types and if it contributes to its pleiotropy. Considering the suggested DNA repair role of nuclear NDRG1, the effects of the above post-translational modifications on its nuclear localization was examined. Herein, the full-length (FL) and truncated (T) NDRG1 isoforms were detected using a C-terminus-directed antibody, while only the FL isoform was identified using an N-terminus-directed antibody. For the first time, we demonstrate that the expression of the NDRG1 FL and T forms occurs in all cancer cell-types examined, as does its phosphorylation (p-NDRG1) at Ser330 and Thr346. The FL isoform localized highly in the nucleus compared to the T isoform. Moreover, p-NDRG1 (Ser330) was also markedly localized in the nucleus, while p-NDRG1 (Thr346) was predominantly cytoplasmic in all cell-types. These results indicate the N-terminus region and phosphorylation at Ser330 could be crucial for NDRG1 nuclear localization and function. PTEN silencing indicated that p-NDRG1 (Thr346) could be regulated differentially in different tumor cell-types, indicating PTEN may be involved in the mechanism(s) underlying the pleiotropic activity of NDRG1. Finally, therapeutics of the di-2-pyridylketone thiosemicarbazone class increased nuclear NDRG1 isoforms (FL and T) detected by the C-terminus-directed antibody in HepG2 cells, while having no significant effect in PC3 cells, indicating differential activity depending on the cell-type.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Neoplasias da Próstata/metabolismo , Proteínas de Ciclo Celular/genética , Células Hep G2 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Metástase Neoplásica , PTEN Fosfo-Hidrolase/genética , Fosforilação/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte Proteico/genética
10.
Biochim Biophys Acta Mol Basis Dis ; 1864(9 Pt B): 2793-2813, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29777905

RESUMO

Many biological processes result from the coupling of metabolic pathways. Considering this, proliferation depends on adequate iron and polyamines, and although iron-depletion impairs proliferation, the metabolic link between iron and polyamine metabolism has never been thoroughly investigated. This is important to decipher, as many disease states demonstrate co-dysregulation of iron and polyamine metabolism. Herein, for the first time, we demonstrate that cellular iron levels robustly regulate 13 polyamine pathway proteins. Seven of these were regulated in a conserved manner by iron-depletion across different cell-types, with four proteins being down-regulated (i.e., acireductone dioxygenase 1 [ADI1], methionine adenosyltransferase 2α [MAT2α], Antizyme and polyamine oxidase [PAOX]) and three proteins being up-regulated (i.e., S-adenosyl methionine decarboxylase [AMD1], Antizyme inhibitor 1 [AZIN1] and spermidine/spermine-N1-acetyltransferase 1 [SAT1]). Depletion of iron also markedly decreased polyamine pools (i.e., spermidine and/or spermine, but not putrescine). Accordingly, iron-depletion also decreased S-adenosylmethionine that is essential for spermidine/spermine biosynthesis. Iron-depletion additionally reduced 3H-spermidine uptake in direct agreement with the lowered levels of the polyamine importer, SLC22A16. Regarding mechanism, the "reprogramming" of polyamine metabolism by iron-depletion is consistent with the down-regulation of ADI1 and MAT2α, and the up-regulation of SAT1. Moreover, changes in ADI1 (biosynthetic) and SAT1 (catabolic) partially depended on the iron-regulated changes in c-Myc and/or p53. The ability of iron chelators to inhibit proliferation was rescuable by putrescine and spermidine, and under some conditions by spermine. Collectively, iron and polyamine metabolism are intimately coupled, which has significant ramifications for understanding the integrated role of iron and polyamine metabolism in proliferation.


Assuntos
Proliferação de Células/fisiologia , Enzimas/metabolismo , Ferro/metabolismo , Redes e Vias Metabólicas/fisiologia , Poliaminas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quelantes/farmacocinética , Regulação para Baixo , Humanos , Redes e Vias Metabólicas/efeitos dos fármacos , Regulação para Cima
11.
Biochim Biophys Acta Gen Subj ; 1862(9): 2053-2068, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29890242

RESUMO

Polyamines are ubiquitous positively charged amines found in all organisms. These molecules play a crucial role in many biological functions including cell growth, gene regulation and differentiation. The three major polyamines produced in all mammalian cells are putrescine, spermidine and spermine. The intracellular levels of these polyamines depend on the interplay of the biosynthetic and catabolic enzymes of the polyamine and methionine salvage pathway, as well as the involvement of polyamine transporters. Polyamine levels are observed to be high in cancer cells, which contributes to malignant transformation, cell proliferation and poor patient prognosis. Considering the critical roles of polyamines in cancer cell proliferation, numerous anti-polyaminergic compounds have been developed as anti-tumor agents, which seek to suppress polyamine levels by specifically inhibiting polyamine biosynthesis, activating polyamine catabolism, or blocking polyamine transporters. However, in terms of the development of effective anti-cancer therapeutics targeting the polyamine system, these efforts have unfortunately resulted in little success. Recently, several studies using the iron chelators, O-trensox and ICL670A (Deferasirox), have demonstrated a decline in both iron and polyamine levels. Since iron levels are also high in cancer cells, and like polyamines, are required for proliferation, these latter findings suggest a biochemically integrated link between iron and polyamine metabolism.


Assuntos
Proliferação de Células , Neoplasias/fisiopatologia , Poliaminas/metabolismo , Animais , Humanos
12.
J Biol Chem ; 291(8): 3796-820, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26601947

RESUMO

Pgp is functional on the plasma membrane and lysosomal membrane. Lysosomal-Pgp can pump substrates into the organelle, thereby trapping certain chemotherapeutics (e.g. doxorubicin; DOX). This mechanism serves as a "safe house" to protect cells against cytotoxic drugs. Interestingly, in contrast to DOX, lysosomal sequestration of the novel anti-tumor agent and P-glycoprotein (Pgp) substrate, di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT), induces lysosomal membrane permeabilization. This mechanism of lysosomal-Pgp utilization enhances cytotoxicity to multidrug-resistant cells. Consequently, Dp44mT has greater anti-tumor activity in drug-resistant relative to non-Pgp-expressing tumors. Interestingly, stressors in the tumor microenvironment trigger endocytosis for cell signaling to assist cell survival. Hence, this investigation examined how glucose variation-induced stress regulated early endosome and lysosome formation via endocytosis of the plasma membrane. Furthermore, the impact of glucose variation-induced stress on resistance to DOX was compared with Dp44mT and its structurally related analogue, di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC). These studies showed that glucose variation-induced stress-stimulated formation of early endosomes and lysosomes. In fact, through the process of fluid-phase endocytosis, Pgp was redistributed from the plasma membrane to the lysosomal membrane via early endosome formation. This lysosomal-Pgp actively transported the Pgp substrate, DOX, into the lysosome where it became trapped as a result of protonation at pH 5. Due to increased lysosomal DOX trapping, Pgp-expressing cells became more resistant to DOX. In contrast, cytotoxicity of Dp44mT and DpC was potentiated due to more lysosomes containing functional Pgp under glucose-induced stress. These thiosemicarbazones increased lysosomal membrane permeabilization and cell death. This mechanism has critical implications for drug-targeting in multidrug-resistant tumors where a stressful micro-environment exists.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Doxorrubicina/farmacocinética , Resistencia a Medicamentos Antineoplásicos , Glucose/metabolismo , Lisossomos/metabolismo , Tiossemicarbazonas/farmacocinética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Transporte Biológico Ativo/efeitos dos fármacos , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Endocitose/efeitos dos fármacos , Endocitose/genética , Humanos , Concentração de Íons de Hidrogênio , Membranas Intracelulares/metabolismo , Lisossomos/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Tiossemicarbazonas/farmacologia
13.
J Biol Chem ; 291(53): 27042-27061, 2016 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-27866158

RESUMO

Nitric oxide (NO) is integral to macrophage cytotoxicity against tumors due to its ability to induce iron release from cancer cells. However, the mechanism for how activated macrophages protect themselves from endogenous NO remains unknown. We previously demonstrated by using tumor cells that glutathione S-transferase P1 (GSTP1) sequesters NO as dinitrosyl-dithiol iron complexes (DNICs) and inhibits NO-mediated iron release from cells via the transporter multidrug resistance protein 1 (MRP1/ABCC1). These prior studies also showed that MRP1 and GSTP1 protect tumor cells against NO cytotoxicity, which parallels their roles in defending cancer cells from cytotoxic drugs. Considering this, and because GSTP1 and MRP1 are up-regulated during macrophage activation, this investigation examined whether this NO storage/transport system protects macrophages against endogenous NO cytotoxicity in two well characterized macrophage cell types (J774 and RAW 264.7). MRP1 expression markedly increased upon macrophage activation, and the role of MRP1 in NO-induced 59Fe release was demonstrated by Mrp1 siRNA and the MRP1 inhibitor, MK571, which inhibited NO-mediated iron efflux. Furthermore, Mrp1 silencing increased DNIC accumulation in macrophages, indicating a role for MRP1 in transporting DNICs out of cells. In addition, macrophage 59Fe release was enhanced by silencing Gstp1, suggesting GSTP1 was responsible for DNIC binding/storage. Viability studies demonstrated that GSTP1 and MRP1 protect activated macrophages from NO cytotoxicity. This was confirmed by silencing nuclear factor-erythroid 2-related factor 2 (Nrf2), which decreased MRP1 and GSTP1 expression, concomitant with reduced 59Fe release and macrophage survival. Together, these results demonstrate a mechanism by which macrophages protect themselves against NO cytotoxicity.


Assuntos
Glutationa S-Transferase pi/antagonistas & inibidores , Isótopos de Ferro/metabolismo , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Óxido Nítrico/metabolismo , Animais , Transporte Biológico , Broncodilatadores/farmacologia , Células Cultivadas , Glutationa/metabolismo , Glutationa S-Transferase pi/fisiologia , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Knockout , Proteínas Associadas à Resistência a Múltiplos Medicamentos/fisiologia , Óxido Nítrico/toxicidade , Propionatos/farmacologia , Substâncias Protetoras/farmacologia , Quinolinas/farmacologia , RNA Interferente Pequeno/genética
14.
Biochim Biophys Acta ; 1863(4): 770-84, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26844774

RESUMO

Melanoma has markedly increased worldwide during the past several decades in the Caucasian population and is responsible for 80% of skin cancer deaths. Considering that metastatic melanoma is almost completely resistant to most current therapies and is linked with a poor patient prognosis, it is crucial to further investigate potential molecular targets. Major cell-autonomous drivers in the pathogenesis of this disease include the classical MAPK (i.e., RAS-RAF-MEK-ERK), WNT, and PI3K signaling pathways. These pathways play a major role in defining the progression of melanoma, and some have been the subject of recent pharmacological strategies to treat this belligerent disease. This review describes the latest advances in the understanding of melanoma progression and the major molecular pathways involved. In addition, we discuss the roles of emerging molecular players that are involved in melanoma pathogenesis, including the functional role of the melanoma tumor antigen, p97/MFI2 (melanotransferrin).


Assuntos
Melanoma/genética , Melanoma/patologia , Oncogenes/fisiologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Animais , Progressão da Doença , Genes ras/fisiologia , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/genética , Via de Sinalização Wnt/fisiologia , Quinases raf/fisiologia
15.
Biochim Biophys Acta ; 1863(7 Pt A): 1665-81, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27102538

RESUMO

The potent and selective anti-tumor agent, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), localizes in lysosomes and forms cytotoxic copper complexes that generate reactive oxygen species (ROS), resulting in lysosomal membrane permeabilization (LMP) and cell death. Herein, the role of lysosomal membrane stability in the anti-tumor activity of Dp44mT was investigated. Studies were performed using molecules that protect lysosomal membranes against Dp44mT-induced LMP, namely heat shock protein 70 (HSP70) and cholesterol. Up-regulation or silencing of HSP70 expression did not affect Dp44mT-induced LMP in MCF7 cells. In contrast, cholesterol accumulation in lysosomes induced by the well characterized cholesterol transport inhibitor, 3-ß-[2-(diethyl-amino)ethoxy]androst-5-en-17-one (U18666A), inhibited Dp44mT-induced LMP and markedly and significantly (p<0.001) reduced the ability of Dp44mT to inhibit cancer cell proliferation (i.e., increased the IC(50)) by 140-fold. On the other hand, cholesterol extraction using methyl-ß-cyclodextrin enhanced Dp44mT-induced LMP and significantly (p<0.01) increased its anti-proliferative activity. The protective effect of U18666A in increasing lysosomal cholesterol and preventing the cytotoxic activity of Dp44mT was not due to induced autophagy. Instead, U18666A was found to decrease lysosomal turnover, resulting in autophagosome accumulation. Moreover, preincubation with U18666A did not prevent the ability of Dp44mT to induce autophagosome synthesis, indicating that autophagic initiation via Dp44mT occurs independently of LMP. These studies demonstrate the significance of lysosomal membrane stability in relation to the ability of Dp44mT to execute tumor cell death and overcome pro-survival autophagy. Hence, lysosomal-dependent cell death induced by Dp44mT serves as an important anti-tumor strategy. These results are important for comprehensively understanding the mechanism of action of Dp44mT.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Membranas Intracelulares/efeitos dos fármacos , Lisossomos/efeitos dos fármacos , Tiossemicarbazonas/farmacologia , Androstenos/farmacologia , Anticolesterolemiantes/farmacologia , Antineoplásicos/metabolismo , Autofagia/efeitos dos fármacos , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Colesterol/metabolismo , Relação Dose-Resposta a Droga , Feminino , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Concentração Inibidora 50 , Membranas Intracelulares/metabolismo , Membranas Intracelulares/patologia , Lisossomos/metabolismo , Lisossomos/patologia , Células MCF-7 , Permeabilidade , Interferência de RNA , Tiossemicarbazonas/metabolismo , Transfecção , beta-Ciclodextrinas/farmacologia
16.
Biochim Biophys Acta ; 1863(4): 727-48, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26844773

RESUMO

Essential metals, such as iron and copper, play a critical role in a plethora of cellular processes including cell growth and proliferation. However, concomitantly, excess of these metal ions in the body can have deleterious effects due to their ability to generate cytotoxic reactive oxygen species (ROS). Thus, the human body has evolved a very well-orchestrated metabolic system that keeps tight control on the levels of these metal ions. Considering their very high proliferation rate, cancer cells require a high abundance of these metals compared to their normal counterparts. Interestingly, new anti-cancer agents that take advantage of the sensitivity of cancer cells to metal sequestration and their susceptibility to ROS have been developed. These ligands can avidly bind metal ions to form redox active metal complexes, which lead to generation of cytotoxic ROS. Furthermore, these agents also act as potent metastasis suppressors due to their ability to up-regulate the metastasis suppressor gene, N-myc downstream regulated gene 1. This review discusses the importance of iron and copper in the metabolism and progression of cancer, how they can be exploited to target tumors and the clinical translation of novel anti-cancer chemotherapeutics.


Assuntos
Antineoplásicos , Quelantes , Cobre/metabolismo , Descoberta de Drogas , Ferro/metabolismo , Metais/metabolismo , Animais , Antineoplásicos/uso terapêutico , Quelantes/uso terapêutico , Descoberta de Drogas/métodos , Descoberta de Drogas/tendências , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Oxirredução , Espécies Reativas de Oxigênio/metabolismo
17.
Pharmacol Res ; 119: 118-127, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28087444

RESUMO

Autophagy is an evolutionary conserved cellular catabolic degradation process in response to stress which involves lysosomal degradation of unnecessary or damaged organelles and misfolded proteins. This is primarily a pro-survival pathway providing the cell with essential nutrients during stressful conditions. There are number of essential metal ions, which are required for normal physiological functioning of cells. Studies have shown that autophagy can be regulated by cellular metal ion concentrations. On the other hand, autophagy is also shown to regulate intracellular levels of certain metal ions. This review discusses recent advances in the research examining the role of metal ions in the autophagic pathway.


Assuntos
Autofagia , Metais/metabolismo , Animais , Cálcio/metabolismo , Cobre/metabolismo , Humanos , Íons/metabolismo , Ferro/metabolismo , Potássio/metabolismo , Transdução de Sinais , Zinco/metabolismo
18.
J Biol Chem ; 290(15): 9588-603, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25720491

RESUMO

Multidrug resistance (MDR) is a major obstacle in cancer treatment. More than half of human cancers express multidrug-resistant P-glycoprotein (Pgp), which correlates with a poor prognosis. Intriguingly, through an unknown mechanism, some drugs have greater activity in drug-resistant tumor cells than their drug-sensitive counterparts. Herein, we investigate how the novel anti-tumor agent di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) overcomes MDR. Four different cell types were utilized to evaluate the effect of Pgp-potentiated lysosomal targeting of drugs to overcome MDR. To assess the mechanism of how Dp44mT overcomes drug resistance, cellular studies utilized Pgp inhibitors, Pgp silencing, lysosomotropic agents, proliferation assays, immunoblotting, a Pgp-ATPase activity assay, radiolabeled drug uptake/efflux, a rhodamine 123 retention assay, lysosomal membrane permeability assessment, and DCF (2',7'-dichlorofluorescin) redox studies. Anti-tumor activity and selectivity of Dp44mT in Pgp-expressing, MDR cells versus drug-sensitive cells were studied using a BALB/c nu/nu xenograft mouse model. We demonstrate that Dp44mT is transported by the lysosomal Pgp drug pump, causing lysosomal targeting of Dp44mT and resulting in enhanced cytotoxicity in MDR cells. Lysosomal Pgp and pH were shown to be crucial for increasing Dp44mT-mediated lysosomal damage and subsequent cytotoxicity in drug-resistant cells, with Dp44mT being demonstrated to be a Pgp substrate. Indeed, Pgp-dependent lysosomal damage and cytotoxicity of Dp44mT were abrogated by Pgp inhibitors, Pgp silencing, or increasing lysosomal pH using lysosomotropic bases. In vivo, Dp44mT potently targeted chemotherapy-resistant human Pgp-expressing xenografted tumors relative to non-Pgp-expressing tumors in mice. This study highlights a novel Pgp hijacking strategy of the unique dipyridylthiosemicarbazone series of thiosemicarbazones that overcome MDR via utilization of lysosomal Pgp transport activity.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Lisossomos/efeitos dos fármacos , Tiossemicarbazonas/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Antineoplásicos/farmacologia , Transporte Biológico/efeitos dos fármacos , Western Blotting , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Feminino , Humanos , Lisossomos/metabolismo , Células MCF-7 , Camundongos Endogâmicos BALB C , Camundongos Nus , Microscopia de Fluorescência , Interferência de RNA , Tiossemicarbazonas/metabolismo , Vimblastina/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
19.
J Biol Chem ; 289(48): 33568-89, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25301941

RESUMO

Autophagy functions as a survival mechanism during cellular stress and contributes to resistance against anticancer agents. The selective antitumor and antimetastatic chelator di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) causes lysosomal membrane permeabilization and cell death. Considering the integral role of lysosomes in autophagy and cell death, it was important to assess the effect of Dp44mT on autophagy to further understand its mechanism of action. Notably, Dp44mT affected autophagy by two mechanisms. First, concurrent with its antiproliferative activity, Dp44mT increased the expression of the classical autophagic marker LC3-II as a result of induced autophagosome synthesis. Second, this effect was supplemented by a reduction in autophagosome degradation as shown by the accumulation of the autophagic substrate and receptor p62. Conversely, the classical iron chelator desferrioxamine induced autophagosome accumulation only by inhibiting autophagosome degradation. The formation of redox-active iron or copper Dp44mT complexes was critical for its dual effect on autophagy. The cytoprotective antioxidant N-acetylcysteine inhibited Dp44mT-induced autophagosome synthesis and p62 accumulation. Importantly, Dp44mT inhibited autophagosome degradation via lysosomal disruption. This effect prevented the fusion of lysosomes with autophagosomes to form autolysosomes, which is crucial for the completion of the autophagic process. The antiproliferative activity of Dp44mT was suppressed by Beclin1 and ATG5 silencing, indicating the role of persistent autophagosome synthesis in Dp44mT-induced cell death. These studies demonstrate that Dp44mT can overcome the prosurvival activity of autophagy in cancer cells by utilizing this process to potentiate cell death.


Assuntos
Antineoplásicos/farmacologia , Autofagia/efeitos dos fármacos , Lisossomos/metabolismo , Neoplasias/tratamento farmacológico , Fagossomos/metabolismo , Tiossemicarbazonas/farmacologia , Acetilcisteína/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cobre/metabolismo , Desferroxamina/farmacologia , Feminino , Sequestradores de Radicais Livres/farmacologia , Humanos , Ferro/metabolismo , Lisossomos/patologia , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Oxirredução/efeitos dos fármacos , Fagossomos/patologia , Sideróforos/farmacologia
20.
J Biol Chem ; 289(14): 9692-709, 2014 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-24532803

RESUMO

N-myc downstream regulated gene 1 (NDRG1) is a potent metastasis suppressor with an undefined role in the stress response. Autophagy is a pro-survival pathway and can be regulated via the protein kinase-like endoplasmic reticulum kinase (PERK)/eIF2α-mediated endoplasmic reticulum (ER) stress pathway. Hence, we investigated the role of NDRG1 in stress-induced autophagy as a mechanism of inhibiting metastasis via the induction of apoptosis. As thiosemicarbazone chelators induce stress and up-regulate NDRG1 to inhibit metastasis, we studied their effects on the ER stress response and autophagy. This was important to assess, as little is understood regarding the role of the stress induced by iron depletion and its role in autophagy. We observed that the chelator, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), which forms redox-active iron and copper complexes, effectively induced ER stress as shown by activation of the PERK/eIF2α pathway. Dp44mT also increased the expression of the autophagic marker, LC3-II, and this was dependent on activation of the PERK/eIF2α axis, as silencing PERK prevented LC3-II accumulation. The effect of Dp44mT on LC3-II expression was at least partially due to iron-depletion, as this effect was also demonstrated with the classical iron chelator, desferrioxamine (DFO), and was not observed for the DFO-iron complex. NDRG1 overexpression also inhibited basal autophagic initiation and the ER stress-mediated autophagic pathway via suppression of the PERK/eIF2α axis. Moreover, NDRG1-mediated suppression of the pro-survival autophagic pathway probably plays a role in its anti-metastatic effects by inducing apoptosis. In fact, multiple pro-apoptotic markers were increased, whereas anti-apoptotic Bcl-2 was decreased upon NDRG1 overexpression. This study demonstrates the role of NDRG1 as an autophagic inhibitor that is important for understanding its mechanism of action.


Assuntos
Autofagia , Proteínas de Ciclo Celular/biossíntese , Estresse do Retículo Endoplasmático , Regulação Neoplásica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/biossíntese , Neoplasias/metabolismo , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Cobre/metabolismo , Desferroxamina/farmacologia , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Ferro/metabolismo , Quelantes de Ferro/farmacologia , Proteínas Associadas aos Microtúbulos/biossíntese , Proteínas Associadas aos Microtúbulos/genética , Neoplasias/genética , Neoplasias/patologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Tiossemicarbazonas/farmacologia , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA