RESUMO
Microplots were used to evaluate the impact of soil texture on Meloidogyne incognita, Thielaviopsis basicola, and their interaction on cotton. A native silt loam soil (48% sand) and four different artificial soil textures produced by mixing native soil with sand (53, 70, 74, and 87% sand) were studied. Each soil texture was infested with 0, 4, or 8 M. incognita eggs and 0 or 20 T. basicola chlamydospore chains per gram of soil in a factorial treatment arrangement. Plots were watered when soil moisture fell below -10 joules/kg for the first 21 days and -30 joules/kg from 22 days to harvest. Plant growth was suppressed early in the season and midseason by T. basicola. M. incognita suppressed plant growth and delayed plant development late in the season across all soil textures. Cotton yield was lower in the presence of either T. basicola or M. incognita. An interaction between M. incognita and T. basicola, which decreased plant growth and yield, occurred in 2006 when neither pathogen caused substantial plant damage. Plant growth, development, and yield were lowest in soils with >74% sand. Root colonization by T. basicola and fungal reproduction and survival decreased in soil having 87% sand. M. incognita generally caused more galling and reproduction in soils as sand content increased. Root galling severity and M. incognita reproduction were suppressed by the presence of T. basicola in soil at sand contents lower than 87%. Soil texture had a greater impact on T. basicola than on M. incognita in this study.
RESUMO
Acyloxydiene-Fe(CO)3 complexes act as enzyme-triggered CO-releasing molecules (ET-CORMs) and can deliver CO intracellularly via esterase-mediated hydrolysis. The protective properties of structurally different ET-CORMs on hypothermic preservation damage and their ability to inhibit VCAM-1 expression were tested on cultured human umbilical vein endothelial cells (HUVEC) and renal proximal tubular epithelial cells (PTEC) using a structure-activity approach. Cytotoxicity of ET-CORMs, protection against hypothermic preservation damage, and inhibition of VCAM-1 expression were assessed. Cytotoxicity of 2-cyclohexenone and 1,3-cyclohexanedione-derived ET-CORMs was more pronounced in HUVEC compared to PTEC and was dependent on the position and type of the ester (acyloxy) substituent(s) (acetate>pivalate>palmitate). Protection against hypothermic preservation injury was only observed for 2-cyclohexenone-derived ET-CORMs and was not mediated by the ET-CORM decomposition product 2-cyclohexenone itself. Structural requirements for protection by these ET-CORMs were different for HUVEC and PTEC. Protection was affected by the nature of the ester functionality in both cell lines. VCAM-1 expression was inhibited by both 2-cyclohexenone- and 1,3-cyclohexanedione-derived ET-CORMs. 2-Cyclohexenone, but not 1,3-cyclohexanedione, also inhibited VCAM-1 expression. We demonstrate that structural alterations of ET-CORMs significantly affect their biological activity. Our data also indicate that different ET-CORMs behave differently in various cell types (epithelial vs endothelial). These findings warrant further studies not only to elucidate the structure-activity relation of ET-CORMs in mechanistic terms but also to assess if structural optimization will yield ET-CORMs with restricted cell specificity.