Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Int J Mol Sci ; 24(18)2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37762215

RESUMO

Mastocytosis is a clinically heterogenous, usually acquired disease of the mast cells with a survival time that depends on the time of onset. It ranges from skin-limited to systemic disease, including indolent and more aggressive variants. The presence of the oncogenic KIT p. D816V gene somatic mutation is a crucial element in the pathogenesis. However, further epigenetic regulation may also affect the expression of genes that are relevant to the pathology. Epigenetic alterations are responsible for regulating the expression of genes that do not modify the DNA sequence. In general, it is accepted that DNA methylation inhibits the binding of transcription factors, thereby down-regulating gene expression. However, so far, little is known about the epigenetic factors leading to the clinical onset of mastocytosis. Therefore, it is essential to identify possible epigenetic predictors, indicators of disease progression, and their link to the clinical picture to establish appropriate management and a therapeutic strategy. The aim of this study was to analyze genome-wide methylation profiles to identify differentially methylated regions (DMRs) in patients with mastocytosis compared to healthy individuals, as well as the genes located in those regulatory regions. Genome-wide DNA methylation profiling was performed in peripheral blood collected from 80 adult patients with indolent systemic mastocytosis (ISM), the most prevalent subvariant of mastocytosis, and 40 healthy adult volunteers. A total of 117 DNA samples met the criteria for the bisulfide conversion step and microarray analysis. Genome-wide DNA methylation analysis was performed using a MethylationEPIC BeadChip kit. Further analysis was focused on the genomic regions rather than individual CpG sites. Co-methylated regions (CMRs) were assigned via the CoMeBack method. To identify DMRs between the groups, a linear regression model with age as the covariate on CMRs was performed using Limma. Using the available data for cases only, an association analysis was performed between methylation status and tryptase levels, as well as the context of allergy, and anaphylaxis. KEGG pathway mapping was used to identify genes differentially expressed in anaphylaxis. Based on the DNA methylation results, the expression of 18 genes was then analyzed via real-time PCR in 20 patients with mastocytosis and 20 healthy adults. A comparison of the genome-wide DNA methylation profile between the mastocytosis patients and healthy controls revealed significant differences in the methylation levels of 85 selected CMRs. Among those, the most intriguing CMRs are 31 genes located within the regulatory regions. In addition, among the 10 CMRs located in the promoter regions, 4 and 6 regions were found to be either hypo- or hypermethylated, respectively. Importantly, three oncogenes-FOXQ1, TWIST1, and ERG-were identified as differentially methylated in mastocytosis patients, for the first time. Functional annotation revealed the most important biological processes in which the differentially methylated genes were involved as transcription, multicellular development, and signal transduction. The biological process related to histone H2A monoubiquitination (GO:0035518) was found to be enriched in association with higher tryptase levels, which may be associated with more aberrant mast cells and, therefore, more atypical mast cell disease. The signal in the BAIAP2 gene was detected in the context of anaphylaxis, but no significant differential methylation was found in the context of allergy. Furthermore, increased expression of genes encoding integral membrane components (GRM2 and KRTCAP3) was found in mastocytosis patients. This study confirms that patients with mastocytosis differ significantly in terms of methylation levels in selected CMRs of genes involved in specific molecular processes. The results of gene expression profiling indicate the increased expression of genes belonging to the integral component of the membrane in mastocytosis patients (GRM2 and KRTCAP3). Further work is warranted, especially in relation to the disease subvariants, to identify links between the methylation status and the symptoms and novel therapeutic targets.


Assuntos
Anafilaxia , Mastocitose Sistêmica , Adulto , Humanos , Metilação de DNA , Mastocitose Sistêmica/genética , Mastocitose Sistêmica/diagnóstico , Epigênese Genética , Anafilaxia/genética , Triptases/genética , Oncogenes , DNA , Expressão Gênica , Ilhas de CpG , Fatores de Transcrição Forkhead/genética
2.
Int J Mol Sci ; 21(18)2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32899887

RESUMO

Atopic dermatitis is a heterogeneous disease, in which the pathogenesis is associated with mutations in genes encoding epidermal structural proteins, barrier enzymes, and their inhibitors; the role of genes regulating innate and adaptive immune responses and environmental factors inducing the disease is also noted. Recent studies point to the key role of epigenetic changes in the development of the disease. Epigenetic modifications are mainly mediated by DNA methylation, histone acetylation, and the action of specific non-coding RNAs. It has been documented that the profile of epigenetic changes in patients with atopic dermatitis (AD) differs from that observed in healthy people. This applies to the genes affecting the regulation of immune response and inflammatory processes, e.g., both affecting Th1 bias and promoting Th2 responses and the genes of innate immunity, as well as those encoding the structural proteins of the epidermis. Understanding of the epigenetic alterations is therefore pivotal to both create new molecular classifications of atopic dermatitis and to enable the development of personalized treatment strategies.


Assuntos
Dermatite Atópica/genética , Dermatite Atópica/metabolismo , Metilação de DNA/genética , Epiderme/metabolismo , Epigênese Genética/genética , Epigenômica/métodos , Proteínas Filagrinas , Predisposição Genética para Doença/genética , Humanos , Imunidade Inata/genética , Mutação/genética , Inibidores de Serinopeptidase do Tipo Kazal/genética , Pele/metabolismo , Pele/patologia , Fenômenos Fisiológicos da Pele/genética
3.
BMC Vet Res ; 15(1): 424, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31775763

RESUMO

BACKGROUND: The present study aimed to determine the expression of cytokines, which is associated with the immunological response of dairy goats against small ruminant lentivirus (SRLV). The study was conducted on 26 dairy goats in their second to sixth lactation, which were divided by breed and parity into two groups: SRLV naturally infected (N = 13) and non-infected (N = 13) animals. All goats in the study were asymptomatic. The milk and blood samples, which served as studied material were taken on days 7, 30, 120 and 240 of the lactation. The gene and protein expression of several cytokines was studied using Real-Time PCR and ELISA methods. RESULTS: INF-ß and INF-γ expression was down-regulated in the milk somatic cells (MSC) of SRLV-infected goats. However, an increased concentration of INF-ß was observed in the MSC in SRLV-infected goats, while INF-γ expression was not observed in both SRLV-infected and non-infected animals The SRLV-infected goats also displayed decreased expression of IL-1α, IL-1ß, IL-6 and INF-γ genes in the blood leukocytes,with IL-1α, IL-1ß and IL-6 protein levels also being decreased in the sera. TNF-α was the only gene that demonstrated increased expression in both the MSC and the blood of infected animals; however, no such overexpression was observed at the protein level. CONCLUSIONS: SRLV probably influences the immune system of infected animals by deregulating of the expression of cytokines. Further, epigenetic studies may clarify the mechanisms by which SRLV regulates the gene and protein expression of the host.


Assuntos
Citocinas/metabolismo , Doenças das Cabras/virologia , Infecções por Lentivirus/veterinária , Leite/metabolismo , Animais , Citocinas/genética , Feminino , Expressão Gênica , Doenças das Cabras/sangue , Doenças das Cabras/imunologia , Doenças das Cabras/metabolismo , Cabras , Lactação , Lentivirus , Infecções por Lentivirus/metabolismo , Leucócitos/metabolismo , Leite/citologia
4.
J Dairy Res ; 86(1): 48-54, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30758279

RESUMO

The aim of this study was to determine the effect of diet supplemented with selenized yeast (Se-yeast) on milk yield and milk composition of goats and expression of casein and mammary-gland-immune system genes in milk somatic cells (MSC). Twenty-four dairy goats in their second to fourth lactations were divided into control and experimental groups, balanced according to lactation number and breed (Polish White or Fawn Improved). Morning milk and blood samples were collected four times during lactation (on the 21st, 70th, 120th, 180th day after kidding). The control and experimental groups were fed diets with 0.7 mg inorganic Se/goat/day (sodium selenite) or 0.6 mg organic Se/goat/day (selenized yeast), respectively. Milk, fat and protein yields during lactation as well as average somatic cell count, fat, protein and lactose contents in milk were evaluated. Microelements in milk and blood serum and biochemical parameters in blood serum were determined at the beginning and the end of the experiment. The expression levels of the genes encoding αS1-casein (CSN1S1), αS2-casein (CSN1S2), κ-casein (CSN3), interleukin 8 (IL-8), serum amyloid A3 (SAA3), interleukin 1ß (IL-1ß), bactenecin 7.5 (BAC7.5), bactenecin 5 (BAC5), ß2-defensin (GBD2), hepcidin (HAMP), chemokine 4 (CCL4), tumour necrosis factor α (TNFα), toll-like receptor 2 (TLR2), cathelicidin-7 (MAP34) and cathelicidin-6 (MAP28) were determined in MSC. Milk, fat, and protein yields were higher and somatic cell count (SCC expressed as natural logarithm) was lower in the milk of goats fed organic Se. The Se concentration in milk was twice as high in the organic vs. inorganic treatment groups at the end of the experiment, while there were no differences in studied biochemical parameters between groups. The transcript levels of CSN1S2 and BAC7.5 were higher and IL-8 was lower in MSC of Se-yeast treated groups. Such results may indicate better health status of mammary glands of goats treated with organic Se as well as positive impact of selenized yeast on the goat's milk composition. Differences in the IL-1ß and IL-8 transcript levels were also noted between the stages of lactation, with the highest expression at the peak of lactation (day 70), highlighting the metabolic burden at this time. We concluded that the Se-yeast supplementation improved the productivity and health status of goats and could have significant economic impact on farmer's income.


Assuntos
Cabras/fisiologia , Lactação/efeitos dos fármacos , Leite/química , Selênio/farmacologia , Animais , Contagem de Células , Indústria de Laticínios/economia , Indústria de Laticínios/métodos , Suplementos Nutricionais/economia , Gorduras/análise , Feminino , Expressão Gênica/efeitos dos fármacos , Nível de Saúde , Interleucina-8/genética , Lactação/genética , Leite/citologia , Proteínas do Leite/análise , Proteínas do Leite/genética , Peptídeos Cíclicos/genética , Saccharomyces cerevisiae/química , Selênio/administração & dosagem , Selênio/análise , Selenito de Sódio/farmacologia
5.
BMC Vet Res ; 13(1): 161, 2017 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-28587645

RESUMO

BACKGROUND: Genome-wide gene expression profiling allows for identification of genes involved in the defense response of the host against pathogens. As presented here, transcriptomic analysis and bioinformatics tools were applied in order to identify genes expressed in the mammary gland parenchyma of cows naturally infected with coagulase-positive and coagulase-negative Staphylococci. RESULTS: In cows infected with coagulase-positive Staphylococci, being in 1st or 2nd lactation, 1700 differentially expressed genes (DEGs) were identified. However, examination of the 3rd or 4th lactations revealed 2200 DEGs. Gene ontology functional classification showed the molecular functions of the DEGs overrepresented the activity of cytokines, chemokines, and their receptors. In cows infected with coagulase-negative Staphylococci, in the 1st or 2nd lactations 418 DEGs, while in the 3rd or 4th lactations, 1200 DEGs were identified that involved in molecular functions such as protein, calcium ion and lipid binding, chemokine activity, and protein homodimerization. Gene network analysis showed DEGs associated with inflammation, cell migration, and immune response to infection, development of cells and tissues, and humoral responses to infections caused by both types of Staphylococci. CONCLUSION: A coagulase-positive Staphylococci infection caused a markedly stronger host response than that of coagulase-negative, resulting in vastly increased DEGs. A significant increase in the expression of the FOS, TNF, and genes encoding the major histocompatibility complex proteins (MHC) was observed. It suggests these genes play a key role in the synchronization of the immune response of the cow's parenchyma against mastitis-causing bacteria. Moreover, the following genes that belong to several physiological pathways (KEGG pathways) were selected for further studies as candidate genes of mammary gland immune response for use in Marker Assisted Selection (MAS): chemokine signaling pathway (CCL2, CXCL5, HCK, CCR1), cell adhesion molecules (CAMs) pathway (BOLA-DQA2, BOLA-DQA1, F11R, ITGAL, CD86), antigen processing and presentation pathway (CD8A, PDIA3, LGMN, IFI30, HSPA1A), and NOD-like receptor signaling pathway (TNF, IL8, IL18, NFKBIA).


Assuntos
Glândulas Mamárias Animais/metabolismo , Mastite Bovina/microbiologia , Tecido Parenquimatoso/microbiologia , Infecções Estafilocócicas/genética , Animais , Bovinos , Coagulase/metabolismo , Bases de Dados Genéticas , Feminino , Perfilação da Expressão Gênica/veterinária , Mastite Bovina/genética , Família Multigênica , Tecido Parenquimatoso/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Staphylococcus/enzimologia
6.
J Dairy Res ; 82(2): 161-8, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25661420

RESUMO

The aim of the study was to assess the effects of partial replacement of soybean meal with a protein-equivalent amount of rapeseed cake in the diet on milking parameters and fatty acid (FA) composition of milk in dairy cows. Two groups of Holstein-Friesian cows, 8 each, consisting of randomised blocks were studied: a control group (C) was given a traditional high-protein supplement (extracted soybean meal) and the experimental group (E), had part of extracted soybean meal replaced with rapeseed cake. Dry matter intake and milk yield in both groups were not affected by the diet but milk fat percentage and yield were decreased in both groups. Rapeseed cake had no effect on milk acidity or on protein (including casein) and lactose contents. A lower concentration of urea in milk in E group indicated a proper ratio of protein to energy in the fodder. Health condition of mammary gland and indicators of metabolic profile were not affected by rapeseed cake supplementation. In E group, the share of atherogenic saturated fatty acids (FA) was reduced after 11 weeks: palmitic, by 26% and myristic, by 22%; moreover, as compared with control cows, the content of monounsaturated FA in milk increased by 44% after 3 weeks and by 68% after 11 weeks, t-18:1 and c-9 t-11 isomer of CLA increased about 2.5-fold after 11 weeks. In E group, the atherogenic index (AI) was significantly (P < 0.001) lower than in C (by 54% on average) and the decrease with time was considerable (by 29%, P < 0.001). Contents of odd- and branched- chain FA in milk were not significantly affected thus reflecting proper rumen function. Partial replacement of soybean meal with rapeseed cake in the diet of cows may improve both milking indices and FA profile of milk.


Assuntos
Dieta/veterinária , Glycine max , Lactação/fisiologia , Leite/química , Silagem/análise , Zea mays , Fenômenos Fisiológicos da Nutrição Animal , Animais , Brassica rapa , Bovinos , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Feminino , Poaceae/química
7.
BMC Vet Res ; 10: 246, 2014 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-25286984

RESUMO

BACKGROUND: Mastitis is still considered to be the most economically important infectious disease in dairy cattle breeding. The immune response in mammary gland tissues could help in developing support strategies to combat this disease. The role of neutrophils and macrophages in the innate response of mammary gland is well known. However, the immune response in mammary gland tissues, including levels of antimicrobial peptide transcripts, has not been well recognized. Moreover, most studies are conducted in vitro, on cell cultures, or on artificially infected animals, with analysis being done within a several dozen hours after infection.The aim of the study was to examine the in vivo transcript levels of beta-defensin and cathelicidins genes in cow mammary gland secretory tissue (parenchyma) with the chronic, recurrent and incurable mammary gland inflammation induced by coagulase-positive or coagulase-negative Staphyloccoci vs. bacteria-free tissue. RESULTS: The mRNA of DEFB1, BNBD4, BNBD5, BNBD10 and LAP genes, but not of TAP gene, were detected in all investigated samples regardless of the animals' age and microbiological status of the mammary gland, but at different levels. The expression of most of the beta-defensin genes was shown to be much higher in tissues derived from udders infected with bacteria (CoPS or CoNS) than from bacteria-free udders, regardless of parity. Cathelicidins (CATH4, CATH5 and CATH6) showed expression patterns contrasting those of ß-defensins, with the highest expression in tissues derived from bacteria-free udders. CONCLUSION: Increased expression of genes encoding ß-defensins in the infected udder confirms their crucial role in the defense of the cow mammary gland against mastitis. On the other hand, the elevated cathelicidin transcripts in non-infected tissues indicate their role in the maintenance of healthy mammary tissues. The expression levels of investigated genes are likely to depend on the duration of the infection and type of bacteria.


Assuntos
Catelicidinas/metabolismo , Coagulase/metabolismo , Regulação da Expressão Gênica/imunologia , Glândulas Mamárias Animais/metabolismo , Staphylococcus/enzimologia , beta-Defensinas/metabolismo , Animais , Catelicidinas/genética , Bovinos , Coagulase/genética , Feminino , Mastite Bovina/metabolismo , Mastite Bovina/microbiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/veterinária , beta-Defensinas/genética
8.
Stem Cell Rev Rep ; 20(5): 1357-1366, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38635127

RESUMO

Purinergic signaling is an ancient primordial signaling system regulating tissue development and specification of various types of stem cells. Thus, functional purinergic receptors are present in several types of cells in the body, including multiple populations of stem cells. However, one stem cell type that has not been evaluated for expression of purinergic receptors is very small embryonic stem cells (VSELs) isolated from postnatal tissues. Herein, we report that human umbilical cord blood (UCB) and murine bone marrow (BM) purified VSELs express mRNA for P1 and P2 purinergic receptors and CD39 and CD73 ectonucleotidases converting extracellular ATP (eATP) into its signaling metabolite extracellular adenosine (eAdo), that antagonizes eATP effects. More importantly, we demonstrate that human and murine VSELs respond by chemotaxis to eATP, and eAdo inhibits this migration. These responses to eATP are mediated by activation of Nlrp3 inflammasome, and exposure of VSELs to its specific inhibitor MCC950 abolished the chemotactic response to ATP. We conclude that purinergic signaling plays an essential, underappreciated role in the biology of these cells and their potential role in response to tissue/organ injuries.


Assuntos
Trifosfato de Adenosina , Apirase , Movimento Celular , Células-Tronco Embrionárias , Humanos , Trifosfato de Adenosina/metabolismo , Animais , Camundongos , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias/citologia , Apirase/metabolismo , Receptores Purinérgicos/metabolismo , 5'-Nucleotidase/metabolismo , 5'-Nucleotidase/genética , Quimiotaxia , Antígenos CD/metabolismo , Antígenos CD/genética , Sangue Fetal/citologia , Sangue Fetal/metabolismo , Adenosina/metabolismo , Transdução de Sinais
9.
J Clin Med ; 13(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38337551

RESUMO

BACKGROUND: Molar incisor hypomineralization (MIH) is a qualitative, demarcated enamel defect of hypomineralization affecting one to four first permanent molars, often with incisor involvement. Its etiology is complex. However, evidence suggests the influence of genetic factors, potentially including the single nucleotide polymorphisms (SNPs) rs2889956, rs4811117 and rs13058467, which were previously linked to MIH in a genome-wide association study of German children. The aim was to replicate analyses of possible associations between the SNPs and molar incisor hypomineralization in Polish children. METHODS: The final study group consisted of 778 children aged 126-168 months old. Saliva samples were taken, and genomic DNA was extracted and genotyped using beadchip microarrays. RESULTS: Among the 778 subjects, there were 68 (8.7%) subjects with MIH and 710 (91.3%) subjects without MIH. There were no significant differences in distributions in age, sex, or the frequency of caries in permanent dentition between the MIH and non-MIH groups. The rs2889956, rs4811117, and rs13058467 genotype distributions in the studied group conformed to the expected Hardy-Weinberg equilibria, and there were no significant differences in the distributions of their alleles or genotypes between the MIH and non-MIH groups. CONCLUSION: Our replication study did not confirm highly significant associations between the single nucleotide polymorphisms rs2889956, rs4811117, and rs13058467 with molar incisor hypomineralization in Polish children.

10.
Front Behav Neurosci ; 17: 957203, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36778133

RESUMO

Alcohol use disorder (AUD) is a worldwide problem. Unfortunately, the molecular mechanisms of alcohol misuse are still poorly understood, therefore successful therapeutic approaches are limited. Accumulating data indicate that the tendency for compulsive alcohol use is inherited, suggesting a genetic background as an important factor. However, the probability to develop AUD is also affected by life experience and environmental factors. Therefore, the epigenetic modifications that are altered over lifetime likely contribute to increased risk of alcohol misuse. Here, we review the literature looking for the link between DNA methylation in the brain, a common epigenetic modification, and AUD-related behaviors in humans, mice and rats. We sum up the main findings, identify the existing gaps in our knowledge and indicate future directions of the research.

11.
Mol Biol Rep ; 39(12): 10957-70, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23065264

RESUMO

Cathelicidins are small, cationic, antimicrobial peptides found in humans and other species, including farm animals (cattle, horses, pigs, sheep, goats, chickens, rabbits and in some species of fish). These proteolytically activated peptides are part of the innate immune system of many vertebrates. These peptides show a broad spectrum of antimicrobial activity against bacteria, enveloped viruses and fungi. Apart from exerting direct antimicrobial effects, cathelicidins can also trigger specific defense responses in the host. Their roles in various pathophysiological conditions have been studied in mice and humans, but there are limited information about their expression sites and activities in livestock. The aim of the present review is to summarize current information about these antimicrobial peptides in farm animals, highlighting peptide expression sites, activities, and future applications for human and veterinary medicine.


Assuntos
Catelicidinas/metabolismo , Sequência de Aminoácidos , Animais , Catelicidinas/química , Catelicidinas/genética , Catelicidinas/farmacologia , Variação Genética , Humanos , Dados de Sequência Molecular
12.
Sci Rep ; 12(1): 13239, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35918371

RESUMO

The study aims to determine the selected miRNAs expression in milk somatic cells (MSC) and blood leukocytes (BL) of SRLV-seronegative (SRLV-SN) and SRLV-seropositive (SRLV-SP) goats. A functional in silico analysis of their target genes was also conducted. MiR-93-5p and miR-30e-5p were expressed only in BL, while miR-144 was expressed only in MSC, regardless of SRLV infection. In the SRLV-SP goats, higher miR-214-3p and miR-221-5p levels were found in the MSC than in the BL. Only miR-30e-5p was influenced by the lactation stage in BL in both groups, while only miR-93-5p was altered in BL of SRLV-SN goats. The target gene protein products exhibited contradictory functions, protecting the host from virus on the one hand and assisting viruses in their life cycle on the other. The differential expression of the miRNAs observed between the MSC and BL of SRLV-SP goats may suggest that the local immune response to the infection in the udder differs from the systemic response, and acts independently. Some miRNAs demonstrated different expression between lactation stages. It may be influenced by the metabolic burden occurring in early lactation and its peak. Some of the studied miRNAs may influence viral infection by regulating the expression of their target genes.


Assuntos
Doenças das Cabras , MicroRNAs , Animais , Feminino , Doenças das Cabras/genética , Doenças das Cabras/metabolismo , Cabras/genética , Lentivirus/genética , Leucócitos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Leite/metabolismo , Ruminantes/genética
13.
Cancers (Basel) ; 14(14)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35884461

RESUMO

Bortezomib (BTZ) is proteasome inhibitor, effectively used in the treatment of multiple myeloma, but frequently discontinued due to peripheral neuropathy, which develops in patients after consecutive treatment cycles. The molecular mechanisms affected by BTZ in neuronal cells, which result in neuropathy, remain unknown. However, BTZ is unlikely to lead to permanent morphological nerve damage, because neuropathy reverses after discontinuation of treatment, and nerve cells have very limited renewal capacity. We have previously shown that BTZ induces methylation changes in SH-SY5Y cells, which take part in the development of treatment resistance. Here, we hypothesized that BTZ affects the methylomes of mature neurons, and these changes are associated with BTZ neurotoxicity. Thus, we studied methylomes of neuronal cells, differentiated from the LUHMES cell line, after cycles of treatment with BTZ. Our results show that BTZ induces specific methylation changes in mature neurons, which are not present in SH-SY5Y cells after BTZ treatment. These changes appear to affect genes involved in morphogenesis, neurogenesis, and neurotransmission. Furthermore, identified methylation changes are significantly enriched within binding sites of transcription factors previously linked to neuron physiology, including EBF, PAX, DLX, LHX, and HNF family members. Altogether, our results indicate that methylation changes are likely to be involved in BTZ neurotoxicity.

14.
Biomed Pharmacother ; 153: 113396, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36076479

RESUMO

Recent studies have shown that methylation changes identified in blood cells of COVID-19 patients have a potential to be used as biomarkers of SARS-CoV-2 infection outcomes. However, different studies have reported different subsets of epigenetic lesions that stratify patients according to the severity of infection symptoms, and more importantly, the significance of those epigenetic changes in the pathology of the infection is still not clear. We used methylomics and transcriptomics data from the largest so far cohort of COVID-19 patients from four geographically distant populations, to identify casual interactions of blood cells' methylome in pathology of the COVID-19 disease. We identified a subset of methylation changes that is uniformly present in all COVID-19 patients regardless of symptoms. Those changes are not present in patients suffering from upper respiratory tract infections with symptoms similar to COVID-19. Most importantly, the identified epigenetic changes affect the expression of genes involved in interferon response pathways and the expression of those genes differs between patients admitted to intensive care units and only hospitalized. In conclusion, the DNA methylation changes involved in pathophysiology of SARS-CoV-2 infection, which are specific to COVID-19 patients, can not only be utilized as biomarkers in the disease management but also present a potential treatment target.


Assuntos
COVID-19 , Biomarcadores , COVID-19/genética , COVID-19/imunologia , Epigênese Genética , Humanos , Interferons/genética , Interferons/imunologia , SARS-CoV-2
15.
Clin Epigenetics ; 14(1): 157, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36447285

RESUMO

BACKGROUND: High caloric diet and lack of physical activity are considered main causes of NAFLD, and a change in the diet is still the only effective treatment of this disease. However, molecular mechanism of the effectiveness of diet change in treatment of NAFLD is poorly understood. We aimed to assess the involvement of epigenetic mechanisms of gene expression regulation in treatment of NAFLD. Eighteen participants with medium- to high-grade steatosis were recruited and trained to follow the Mediterranean diet modified to include fibre supplements. At three timepoints (baseline, after 30 and 60 days), we evaluated adherence to the diet and measured a number of physiological parameters such as anthropometry, blood and stool biochemistry, liver steatosis and stiffness. We also collected whole blood samples for genome-wide methylation profiling and histone acetylation assessment. RESULTS: The diet change resulted in a decrease in liver steatosis along with statistically significant, but a minor change in BMI and weight of our study participants. The epigenetic profiling of blood cells identified significant genome-wide changes of methylation and acetylation with the former not involving regions directly regulating gene expression. Most importantly, we were able to show that identified blood methylation changes occur also in liver cells of NAFLD patients and the machine learning-based classifier that we build on those methylation changes was able to predict the stage of liver fibrosis with ROC AUC = 0.9834. CONCLUSION: Methylomes of blood cells from NAFLD patients display a number of changes that are most likely a consequence of unhealthy diet, and the diet change appears to reverse those epigenetic changes. Moreover, the methylation status at CpG sites undergoing diet-related methylation change in blood cells stratifies liver biopsies from NAFLD patients according to fibrosis grade.


Assuntos
Dieta Mediterrânea , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/genética , Metilação de DNA , Biópsia , Cirrose Hepática/genética
16.
Animals (Basel) ; 11(7)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206282

RESUMO

The aim of this study was to determine whether asymptomatic small ruminant lentivirus seropositive (SRLV-SP) goats were more susceptible to bacterial infection of the udder when lactating by comparing the presence and species of pathogenic bacteria in their milk with the values for seronegative goats (SRLV-SN). Milk samples were collected during morning milking on days 20, 40, 60, 150, and 210 of lactation for three consecutive years and subjected to bacteriological examination. Staphylococcus caprae and S. xylosus were the most frequent strains identified in both SRLV-SP and SRLV-SN goats. The prevalence of pathogenic bacteria was the highest in the 1st lactation, regardless of SRLV status. Moreover, the prevalence of pathogenic bacteria was significantly higher in SRLV-SP goats, but only those in the 5th or further lactation (p = 0.010). This suggests a relationship between long-lasting SRLV infection and susceptibility to bacterial infections of the udder.

17.
BMC Med Genomics ; 14(1): 179, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34229657

RESUMO

BACKGROUND: Many studies have proposed that the pathogenesis of obesity has a genetic basis, with an important risk factor being the presence of polymorphisms in the region of the TMEM18 gene, which plays a significant role in feeding behaviour; however, subsequent studies among different ethnic populations and age groups have shown inconsistent results. Therefore, this present meta-analysis examines the relationship between TMEM18 polymorphisms with the risk of obesity with regard to age group and ethnic population. METHODS: A literature database search was conducted for available relevant studies investigating the association between obesity risk and the presence of rs6548238, rs4854344, rs11127485, rs2867125 and rs7561317 polymorphisms in TMEM18. Pooled odds ratio (OR) and 95% confidence intervals (95% CI) were calculated by either a fixed-effects model or random effect model based on a heterogeneity test. The meta-analysis of rs6548238 and its surrogates examined the relationships between 53 395 obesity cases and 123 972 healthy controls from 27 studies and published data from the POPULOUS collection (Poland). RESULTS: A significant association is observed between rs6548238 (and surrogate) and obesity risk, with OR = 1.25 (95% CI: 1.08-1.45). Regarding population type, a significant association was revealed among groups of Europeans with OR = 1.32 (1.10-1.59) and Mexicans with OR = 1.39 (1.13-1.73). However, a lack of statistical significance was noticed in groups in Asia with OR = 1.11 (95% CI: 0.86-1.42). Regarding age, a significant association was observed among children with OR = 1.28 (95% CI: 1.18-1.39) but not in adults OR = 1.21 (95% CI: 0.92-1.58). CONCLUSIONS: The polymorphisms near TMEM18 appear to play a role in the development of obesity. Our findings indicate that differences exist between ethnic populations and age groups, supporting those of a previous study showing the various effects of genetic factors on age and ethnic groups.


Assuntos
Obesidade
18.
Clin Transl Allergy ; 11(9): e12074, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34754417

RESUMO

BACKGROUND: Mastocytosis is a clinically heterogeneous, usually acquired disease of the mast cells with a survival time that depends on the onset of the disease and ranges from skin-limited to systemic disease, including indolent and more aggressive variants. The crucial element in pathogenesis is the presence of oncogenic KIT somatic mutation D816V. Further epigenetic alterations are responsible for regulating the expression of genes. It is essential to identify indicators of disease progression, and the specific clinical picture to establish an appropriate therapeutic strategy. OBJECTIVE: The aim of this study was to analyze the relation of mastocytosis symptoms and epigenetic changes, and to identify epigenetic predictors of the disease. METHODS: Global DNA methylation profile analysis was performed in peripheral blood collected from 73 patients with indolent systemic mastocytosis (ISM) and 43 healthy adult volunteers. Levels of 5-methylcytosine (5-mC) and 5-hydroxymethylcytosine (5-hmC) were determined using an ELISA-based method, while the methylation of the Alu and LINE-1 repeats were assayed with the quantitative methylation-specific PCR technique. A questionnaire interview was conducted among the study participants to collect data on possible epigenetic modifiers. Additionally, the methylation profile was compared between three human mast cell lines: ROSA KIT D816V, ROSA KIT WT, and HMC-1.1 KIT V560G, in order to assess the association between KIT mutations and methylation profile. RESULTS: A significantly lower level of DNA hydroxymethylation (5-hmC) in the blood was found in patients with ISM as compared to the controls (0.022% vs. 0.042%, p = 0.0001). Differences in the markers of global DNA methylation (5-mC, Alu, LINE-1) were not statistically significant, although they did indicate generally higher DNA methylation in patients with mastocytosis. The 5-hmC level was significantly associated with allergy (p = 0.011) in patients with ISM, showing a higher level of 5-hmC in patients with allergy as compared to patients without allergy. The in vitro study revealed significant differences between the studied cell lines at the level of 5-mC, Alu, and LINE-1. CONCLUSIONS: This study confirms that epigenetic changes are involved in mastocytosis, and suggests that allergy may be an important epigenetic modifier of the disease. A possible association between KIT mutations and methylation status observed in human mast cell lines requires further investigation in human studies. CLINICAL IMPLICATIONS: Epigenetic alterations are involved in mastocytosis pathology. The possible role of allergy as an important epigenetic modifier suggests the more impaired function of mast cells in ISM patients without allergy. CAPSULE SUMMARY: Decreased DNA demethylation in the blood DNA of patients with ISM confirms that epigenetic alterations are involved in mastocytosis pathology. We observed a possible role of allergy as an important epigenetic modifier. There is a possible association between KIT mutations and the methylation status observed in human mast cell lines.

19.
Front Genet ; 11: 567309, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193657

RESUMO

The study presents a full analysis of the Y-chromosome variability of the modern male Polish population. It is the first study of the Polish population to be conducted with such a large set of data (2,705 individuals), which includes genetic information from inhabitants of all voivodeships, i.e., the first administrative level, in the country and the vast majority of its counties, i.e., the second level. In addition, the available data were divided into clusters corresponding to more natural geographic regions. Genetic analysis included the estimation of F ST distances, the visualization with the use of multidimensional scaling plots and analysis of molecular variance. Y-chromosome binary haplogroups were classified and visualized with the use of interpolation maps. Results showed that the level of differentiation within Polish population is quite low, but some differences were indicated. It was confirmed that the Polish population is characterized by a high degree of homogeneity, with only slight genetic differences being observed at the regional level. The use of regional clustering as an alternative to counties and voivodeships provided a more detailed view of the genetic structure of the population. Those regional differences identified in the present study highlighted the need for additional division of the population by cultural and ethnic criteria in such studies rather than just by geographical or administrative regionalization.

20.
Eur J Hum Genet ; 27(8): 1304-1314, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30903113

RESUMO

The aim of the present study was to define the mtDNA variability of Polish population and to visualize the genetic relations between Poles. For the first time, the study of Polish population was conducted on such a large number of individuals (5852) representing administrative units of both levels of local administration in Poland (voivodeships and counties). Additionally, clustering was used as a method of population subdivision. Performed genetic analysis, included FST, MDS plot, AMOVA and SAMOVA. Haplogroups were classified and their geographical distribution was visualized using surface interpolation maps. Results of the present study showed that Poles are characterized by the main West Eurasian mtDNA haplogroups. Furthermore, the level of differentiation within the Polish population was quite low but the existing genetic differences could be explained well with geographic distances. This may lead to a conclusion that Poles can be considered as genetically homogenous but with slight differences, highlighted at the regional level. Some patterns of variability were observed and could be explained by the history of demographic processes in Poland such as resettlements and migrations of women or relatively weaker urbanisation and higher rural population retention of some regions.


Assuntos
DNA Mitocondrial/genética , Variação Genética , Genética Populacional/métodos , Haplótipos , Análise por Conglomerados , Genética Populacional/estatística & dados numéricos , Geografia , Humanos , Polônia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA