Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Genomics ; 15: 917, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25331961

RESUMO

BACKGROUND: Stick and leaf insects (Phasmatodea) are an exclusively leaf-feeding order of insects with no record of omnivory, unlike other "herbivorous" Polyneoptera. They represent an ideal system for investigating the adaptations necessary for obligate folivory, including plant cell wall degrading enzymes (PCWDEs). However, their physiology and internal anatomy is poorly understood, with limited genomic resources available. RESULTS: We de novo assembled transcriptomes for the anterior and posterior midguts of six diverse Phasmatodea species, with RNA-Seq on one exemplar species, Peruphasma schultei. The latter's assembly yielded >100,000 transcripts, with over 4000 transcripts uniquely or more highly expressed in specific midgut sections. Two to three dozen PCWDE encoding gene families, including cellulases and pectinases, were differentially expressed in the anterior midgut. These genes were also found in genomic DNA from phasmid brain tissue, suggesting endogenous production. Sequence alignments revealed catalytic sites on most PCWDE transcripts. While most phasmid PCWDE genes showed homology with those of other insects, the pectinases were homologous to bacterial genes. CONCLUSIONS: We identified a large and diverse PCWDE repertoire endogenous to the phasmids. If these expressed genes are translated into active enzymes, then phasmids can theoretically break plant cell walls into their monomer components independently of microbial symbionts. The differential gene expression between the two midgut sections provides the first molecular hints as to their function in living phasmids. Our work expands the resources available for industrial applications of animal-derived PCWDEs, and facilitates evolutionary analysis of lower Polyneopteran digestive enzymes, including the pectinases whose origin in Phasmatodea may have been a horizontal transfer event from bacteria.


Assuntos
Parede Celular/metabolismo , Sistema Digestório/enzimologia , Enzimas/genética , Enzimas/metabolismo , Perfilação da Expressão Gênica , Insetos/genética , Células Vegetais/metabolismo , Sequência de Aminoácidos , Animais , Enzimas/química , Insetos/enzimologia , Insetos/metabolismo , Anotação de Sequência Molecular , Dados de Sequência Molecular , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Alinhamento de Sequência , Análise de Sequência de RNA
3.
Sci Rep ; 10(1): 11990, 2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32686702

RESUMO

Honey bee queens undergo dramatic behavioral (e.g., reduced sexual receptivity), physiological (e.g., ovary activation, ovulation, and modulation of pheromone production) and transcriptional changes after they complete mating. To elucidate how queen post-mating changes are influenced by seminal fluid, the non-spermatozoa-containing component of semen, we injected queens with semen or seminal fluid alone. We assessed queen sexual receptivity (as measured by likelihood to take mating flights), ovary activation, worker retinue response (which is influenced by queen pheromone production), and transcriptional changes in queen abdominal fat body and brain tissues. Injection with either seminal fluid or semen resulted in decreased sexual receptivity, increased attractiveness of queens to workers, and altered expression of several genes that are also regulated by natural mating in queens. The post-mating and transcriptional changes of queens receiving seminal fluid were not significantly different from queens injected with semen, suggesting that components in seminal fluid, such as seminal fluid proteins, are largely responsible for stimulating post-mating changes in queens.


Assuntos
Abelhas/fisiologia , Sêmen/fisiologia , Comportamento Sexual Animal/fisiologia , Animais , Abelhas/genética , Encéfalo/metabolismo , Corpo Adiposo/metabolismo , Feminino , Voo Animal/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ontologia Genética , Masculino , Ovário/fisiologia , Transcriptoma/genética
4.
PLoS One ; 8(12): e84160, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24358338

RESUMO

The sequencing depth necessary for documenting differential gene expression using RNA-Seq has been little explored outside of model systems. In particular, the depth required to analyze large-scale patterns of differential transcription factor expression is not known. The goal of the present study is to explore the effectiveness of shallow (relatively low read depth) RNA-Seq. We focus on two tissues in the honey bee: the sting gland and the digestive tract. The sting gland is an experimentally well-understood tissue that we use to benchmark the utility of this approach. We use the digestive tract to test the results obtained with the sting gland, and to conduct RNA-Seq between tissue types. Using a list of experimentally verified genes conferring tissue-specific functions in the sting gland, we show that relatively little read depth is necessary to identify them. We argue that this result should be broadly applicable, since genes important for tissue-specific functions often have robust expression patterns, and because we obtained similar results in our analysis of the digestive tract. Furthermore, we demonstrate that the differential expression of transcription factors, which are transcribed at low levels compared to other genes, can nevertheless often be determined using shallow RNA-Seq. Overall, we find over 150 differentially expressed transcription factors in our tissues at a read depth of only 12 million. This work shows the utility of low-depth sequencing for identifying genes important for tissue-specific functions. It also verifies the often-held belief that transcription factors show low levels of expression, while demonstrating that, in spite of this, they are frequently amenable to shallow RNA-Seq. Our findings should be of benefit to researchers using RNA-Seq in many different biological systems.


Assuntos
Perfilação da Expressão Gênica , Expressão Gênica , Análise de Sequência de RNA , Animais , Abelhas/genética , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Fatores de Transcrição , Transcriptoma
5.
PLoS One ; 7(8): e42433, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22879983

RESUMO

BACKGROUND: DNA methylation is a common regulator of gene expression, including acting as a regulator of developmental events and behavioral changes in adults. Using the unique system of genetic caste determination in Pogonomyrmex barbatus, we were able to document changes in DNA methylation during development, and also across both ancient and contemporary hybridization events. METHODOLOGY/PRINCIPAL FINDINGS: Sodium bisulfite sequencing demonstrated in vivo methylation of symmetric CG dinucleotides in P. barbatus. We also found methylation of non-CpG sequences. This validated two bioinformatics methods for predicting gene methylation, the bias in observed to expected ratio of CpG dinucleotides and the density of CpG/TpG single nucleotide polymorphisms (SNP). Frequencies of genomic DNA methylation were determined for different developmental stages and castes using ms-AFLP assays. The genetic caste determination system (GCD) is probably the product of an ancestral hybridization event between P. barbatus and P. rugosus. Two lineages obligately co-occur within a GCD population, and queens are derived from intra-lineage matings whereas workers are produced from inter-lineage matings. Relative DNA methylation levels of queens and workers from GCD lineages (contemporary hybrids) were not significantly different until adulthood. Virgin queens had significantly higher relative levels of DNA methylation compared to workers. Worker DNA methylation did not vary among developmental stages within each lineage, but was significantly different between the currently hybridizing lineages. Finally, workers of the two genetic caste determination lineages had half as many methylated cytosines as workers from the putative parental species, which have environmental caste determination. CONCLUSIONS/SIGNIFICANCE: These results suggest that DNA methylation may be a conserved regulatory mechanism moderating division of labor in both bees and ants. Current and historic hybridization appear to have altered genomic methylation levels suggesting a possible link between changes in overall DNA methylation and the origin and regulation of genetic caste determination in P. barbatus.


Assuntos
Formigas/crescimento & desenvolvimento , Formigas/genética , Metilação de DNA/genética , Hierarquia Social , Hibridização Genética , Animais , Ilhas de CpG/genética , Feminino , Genes de Insetos/genética , Masculino , Filogenia , Análise de Sequência de DNA , Comportamento Sexual Animal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA