Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Hazard Mater ; 165(1-3): 240-9, 2009 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-19027228

RESUMO

Industrial valorisation of low cost and renewable biomass as raw precursor of activated carbon for environmental applications is an interesting alternative to costly commercial activated carbons. In this study, the possible use of Mediterranean, Posidonia oceanica fibrous biomass, as a precursor for chars and physically activated carbons, is investigated. Firstly, the raw marine material was chemically and biochemically characterised throughout dry-basis elemental, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) analysis. Then, several P. oceanica chars were prepared and characterised under different pyrolysis times and temperatures. In addition, physically activated carbons (PACs) were produced via water steam flow under various activation periods. The results showed that the pyrolysis induces the creation of pores at different levels with respect to the involved temperature. Thereafter, the physical activation tends to enhance the development of the porous structure. In that issue, the performed Brunauer-Emmett-Teller (BET) and Barrett-Joiner-Halenda (BJH) analysis revealed that the prepared PACs have a mainly mesoporous inner morphology with a varying fraction of micropores.


Assuntos
Alismatales/química , Carbono/química , Carvão Vegetal/síntese química , Animais , Biomassa , Temperatura Alta , Porosidade
2.
J Microsc ; 210(Pt 1): 53-9, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12694416

RESUMO

Electron energy-loss spectroscopy (EELS) has been used to characterize the electronic structure of charcoal phases at the nanoscale, thus demonstrating that the technique can be applied to environmental science. Activated charcoal is extensively used to remove pollutants from liquid and gaseous sewage. It is mainly obtained by activation of coke or charcoal produced from ligneous precursors. The present study concerns the use of by-products of local Caribbean agriculture, such as sugar cane bagasse, fruit stones and seeds, for use as activated charcoal precursors. Charcoal phases are prepared by high-temperature pyrolysis of lignocellulosic raw materials under a nitrogen gas flow. With the aim of optimizing the pyrolysis temperature and duration and oxygen content, the concentration of carbon sp2 hybridized chemical bonds and structural ordering have been followed by EELS for different treatment temperatures. To quantify the carbon sp2 content, near edge structure (NES) at the carbon K edge has been measured to determine the strength of pi --> pi* and 1s --> pi* transitions. Three precursors of plant origin, shells of Terminalia catappa and Acrocomia karukerana and seeds of Psidium guajava, with the pyrolysis temperatures between 600 and 900 degrees C, were investigated. The fraction of carbon sp2 bonding is found to increase when the temperature rises from 600 degrees C to the range 700-750 degrees C and becomes stable at higher temperatures. For temperatures in excess of 700 degrees C, structural ordering probably occurs and well-defined 1s --> sigma* NES is present, whose intensity increases with increasing preparation temperature. For the highest temperature of around 900 degrees C, the structure of the final product is less well organized than graphitized carbon but a few per cent of a highly ordered phase is found.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA