Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS One ; 19(4): e0301446, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38573983

RESUMO

Reductions in sequencing costs have enabled widespread use of shotgun metagenomics and amplicon sequencing, which have drastically improved our understanding of the microbial world. However, large sequencing projects are now hampered by the cost of library preparation and low sample throughput, comparatively to the actual sequencing costs. Here, we benchmarked three high-throughput DNA extraction methods: ZymoBIOMICS™ 96 MagBead DNA Kit, MP BiomedicalsTM FastDNATM-96 Soil Microbe DNA Kit, and DNeasy® 96 PowerSoil® Pro QIAcube® HT Kit. The DNA extractions were evaluated based on length, quality, quantity, and the observed microbial community across five diverse soil types. DNA extraction of all soil types was successful for all kits, however DNeasy® 96 PowerSoil® Pro QIAcube® HT Kit excelled across all performance parameters. We further used the nanoliter dispensing system I.DOT One to miniaturize Illumina amplicon and metagenomic library preparation volumes by a factor of 5 and 10, respectively, with no significant impact on the observed microbial communities. With these protocols, DNA extraction, metagenomic, or amplicon library preparation for one 96-well plate are approx. 3, 5, and 6 hours, respectively. Furthermore, the miniaturization of amplicon and metagenome library preparation reduces the chemical and plastic costs from 5.0 to 3.6 and 59 to 7.3 USD pr. sample. This enhanced efficiency and cost-effectiveness will enable researchers to undertake studies with greater sample sizes and diversity, thereby providing a richer, more detailed view of microbial communities and their dynamics.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Metagenoma , Análise Custo-Benefício , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , DNA , Solo , Metagenômica/métodos
2.
ISME J ; 17(4): 561-569, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36697964

RESUMO

Cable bacteria of the Desulfobulbaceae family are centimeter-long filamentous bacteria, which are capable of conducting long-distance electron transfer. Currently, all cable bacteria are classified into two candidate genera: Candidatus Electronema, typically found in freshwater environments, and Candidatus Electrothrix, typically found in saltwater environments. This taxonomic framework is based on both 16S rRNA gene sequences and metagenome-assembled genome (MAG) phylogenies. However, most of the currently available MAGs are highly fragmented, incomplete, and thus likely miss key genes essential for deciphering the physiology of cable bacteria. Also, a closed, circular genome of cable bacteria has not been published yet. To address this, we performed Nanopore long-read and Illumina short-read shotgun sequencing of selected environmental samples and a single-strain enrichment of Ca. Electronema aureum. We recovered multiple cable bacteria MAGs, including two circular and one single-contig. Phylogenomic analysis, also confirmed by 16S rRNA gene-based phylogeny, classified one circular MAG and the single-contig MAG as novel species of cable bacteria, which we propose to name Ca. Electronema halotolerans and Ca. Electrothrix laxa, respectively. The Ca. Electronema halotolerans, despite belonging to the previously recognized freshwater genus of cable bacteria, was retrieved from brackish-water sediment. Metabolic predictions showed several adaptations to a high salinity environment, similar to the "saltwater" Ca. Electrothrix species, indicating how Ca. Electronema halotolerans may be the evolutionary link between marine and freshwater cable bacteria lineages.


Assuntos
Bactérias , Sedimentos Geológicos , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Sedimentos Geológicos/microbiologia , Transporte de Elétrons , Bactérias/genética , Bactérias/metabolismo , Filogenia , Água Doce/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA