Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Gastroenterology ; 159(4): 1357-1374.e10, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32673694

RESUMO

BACKGROUND & AIMS: Excess and unresolved endoplasmic reticulum (ER) stress in intestinal epithelial cells (IECs) promotes intestinal inflammation. Activating transcription factor 6 (ATF6) is one of the signaling mediators of ER stress. We studied the pathways that regulate ATF6 and its role for inflammation in IECs. METHODS: We performed an RNA interference screen, using 23,349 unique small interfering RNAs targeting 7783 genes and a luciferase reporter controlled by an ATF6-dependent ERSE (ER stress-response element) promoter, to identify proteins that activate or inhibit the ATF6 signaling pathway in HEK293 cells. To validate the screening results, intestinal epithelial cell lines (Caco-2 cells) were transfected with small interfering RNAs or with a plasmid overexpressing a constitutively active form of ATF6. Caco-2 cells with a CRISPR-mediated disruption of autophagy related 16 like 1 gene (ATG16L1) were used to study the effect of ATF6 on ER stress in autophagy-deficient cells. We also studied intestinal organoids derived from mice that overexpress constitutively active ATF6, from mice with deletion of the autophagy related 16 like 1 or X-Box binding protein 1 gene in IECs (Atg16l1ΔIEC or Xbp1ΔIEC, which both develop spontaneous ileitis), from patients with Crohn's disease (CD) and healthy individuals (controls). Cells and organoids were incubated with tunicamycin to induce ER stress and/or chemical inhibitors of newly identified activator proteins of ATF6 signaling, and analyzed by real-time polymerase chain reaction and immunoblots. Atg16l1ΔIEC and control (Atg16l1fl/fl) mice were given intraperitoneal injections of tunicamycin and were treated with chemical inhibitors of ATF6 activating proteins. RESULTS: We identified and validated 15 suppressors and 7 activators of the ATF6 signaling pathway; activators included the regulatory subunit of casein kinase 2 (CSNK2B) and acyl-CoA synthetase long chain family member 1 (ACSL1). Knockdown or chemical inhibition of CSNK2B and ACSL1 in Caco-2 cells reduced activity of the ATF6-dependent ERSE reporter gene, diminished transcription of the ATF6 target genes HSP90B1 and HSPA5 and reduced NF-κB reporter gene activation on tunicamycin stimulation. Atg16l1ΔIEC and or Xbp1ΔIEC organoids showed increased expression of ATF6 and its target genes. Inhibitors of ACSL1 or CSNK2B prevented activation of ATF6 and reduced CXCL1 and tumor necrosis factor (TNF) expression in these organoids on induction of ER stress with tunicamycin. Injection of mice with inhibitors of ACSL1 or CSNK2B significantly reduced tunicamycin-mediated intestinal inflammation and IEC death and expression of CXCL1 and TNF in Atg16l1ΔIEC mice. Purified ileal IECs from patients with CD had higher levels of ATF6, CSNK2B, and HSPA5 messenger RNAs than controls; early-passage organoids from patients with active CD show increased levels of activated ATF6 protein, incubation of these organoids with inhibitors of ACSL1 or CSNK2B reduced transcription of ATF6 target genes, including TNF. CONCLUSIONS: Ileal IECs from patients with CD have higher levels of activated ATF6, which is regulated by CSNK2B and HSPA5. ATF6 increases expression of TNF and other inflammatory cytokines in response to ER stress in these cells and in organoids from Atg16l1ΔIEC and Xbp1ΔIEC mice. Strategies to inhibit the ATF6 signaling pathway might be developed for treatment of inflammatory bowel diseases.


Assuntos
Fator 6 Ativador da Transcrição/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Células Epiteliais/patologia , Íleo/metabolismo , Íleo/patologia , Doenças Inflamatórias Intestinais/metabolismo , Animais , Autofagia , Células CACO-2 , Técnicas de Cultura de Células , Chaperona BiP do Retículo Endoplasmático , Células HEK293 , Humanos , Doenças Inflamatórias Intestinais/etiologia , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/patologia , Camundongos , Transdução de Sinais
2.
Artigo em Inglês | MEDLINE | ID: mdl-30709874

RESUMO

Whole-genome and whole-exome sequencing of individual patients allow the study of rare and potentially causative genetic variation. In this study, we sequenced DNA of a trio comprising a boy with very-early-onset inflammatory bowel disease (veoIBD) and his unaffected parents. We identified a rare, X-linked missense variant in the NAPDH oxidase NOX1 gene (c.C721T, p.R241C) in heterozygous state in the mother and in hemizygous state in the patient. We discovered that, in addition, the patient was homozygous for a common missense variant in the CYBA gene (c.T214C, p.Y72H). CYBA encodes the p22phox protein, a cofactor for NOX1. Functional assays revealed reduced cellular ROS generation and antibacterial capacity of NOX1 and p22phox variants in intestinal epithelial cells. Moreover, the identified NADPH oxidase complex variants affected NOD2-mediated immune responses, and p22phox was identified as a novel NOD2 interactor. In conclusion, we detected missense variants in a veoIBD patient that disrupt the host response to bacterial challenges and reduce protective innate immune signaling via NOD2. We assume that the patient's individual genetic makeup favored disturbed intestinal mucosal barrier function.


Assuntos
Doenças Inflamatórias Intestinais/genética , Mutação de Sentido Incorreto , NADPH Oxidase 1/genética , NADPH Oxidases/genética , Linhagem Celular Tumoral , Cromossomos Humanos X , Homozigoto , Humanos , Doenças Inflamatórias Intestinais/enzimologia , Masculino , Proteína Adaptadora de Sinalização NOD2/genética , Polimorfismo de Nucleotídeo Único , Sequenciamento do Exoma , Sequenciamento Completo do Genoma
3.
Genome Med ; 10(1): 27, 2018 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-29653584

RESUMO

BACKGROUND: The interplay of epigenetic processes and the intestinal microbiota may play an important role in intestinal development and homeostasis. Previous studies have established that the microbiota regulates a large proportion of the intestinal epithelial transcriptome in the adult host, but microbial effects on DNA methylation and gene expression during early postnatal development are still poorly understood. Here, we sought to investigate the microbial effects on DNA methylation and the transcriptome of intestinal epithelial cells (IECs) during postnatal development. METHODS: We collected IECs from the small intestine of each of five 1-, 4- and 12 to 16-week-old mice representing the infant, juvenile, and adult states, raised either in the presence or absence of a microbiota. The DNA methylation profile was determined using reduced representation bisulfite sequencing (RRBS) and the epithelial transcriptome by RNA sequencing using paired samples from each individual mouse to analyze the link between microbiota, gene expression, and DNA methylation. RESULTS: We found that microbiota-dependent and -independent processes act together to shape the postnatal development of the transcriptome and DNA methylation signatures of IECs. The bacterial effect on the transcriptome increased over time, whereas most microbiota-dependent DNA methylation differences were detected already early after birth. Microbiota-responsive transcripts could be attributed to stage-specific cellular programs during postnatal development and regulated gene sets involved primarily immune pathways and metabolic processes. Integrated analysis of the methylome and transcriptome data identified 126 genomic loci at which coupled differential DNA methylation and RNA transcription were associated with the presence of intestinal microbiota. We validated a subset of differentially expressed and methylated genes in an independent mouse cohort, indicating the existence of microbiota-dependent "functional" methylation sites which may impact on long-term gene expression signatures in IECs. CONCLUSIONS: Our study represents the first genome-wide analysis of microbiota-mediated effects on maturation of DNA methylation signatures and the transcriptional program of IECs after birth. It indicates that the gut microbiota dynamically modulates large portions of the epithelial transcriptome during postnatal development, but targets only a subset of microbially responsive genes through their DNA methylation status.


Assuntos
Metilação de DNA/genética , Células Epiteliais/metabolismo , Microbioma Gastrointestinal/genética , Regulação da Expressão Gênica no Desenvolvimento , Intestinos/citologia , Transcriptoma/genética , Animais , Feminino , Loci Gênicos , Crescimento e Desenvolvimento/genética , Camundongos Endogâmicos C57BL , RNA/genética , Transcrição Gênica
4.
J Exp Med ; 215(11): 2868-2886, 2018 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-30254094

RESUMO

A coding variant of the inflammatory bowel disease (IBD) risk gene ATG16L1 has been associated with defective autophagy and deregulation of endoplasmic reticulum (ER) function. IL-22 is a barrier protective cytokine by inducing regeneration and antimicrobial responses in the intestinal mucosa. We show that ATG16L1 critically orchestrates IL-22 signaling in the intestinal epithelium. IL-22 stimulation physiologically leads to transient ER stress and subsequent activation of STING-dependent type I interferon (IFN-I) signaling, which is augmented in Atg16l1 ΔIEC intestinal organoids. IFN-I signals amplify epithelial TNF production downstream of IL-22 and contribute to necroptotic cell death. In vivo, IL-22 treatment in Atg16l1 ΔIEC and Atg16l1 ΔIEC/Xbp1 ΔIEC mice potentiates endogenous ileal inflammation and causes widespread necroptotic epithelial cell death. Therapeutic blockade of IFN-I signaling ameliorates IL-22-induced ileal inflammation in Atg16l1 ΔIEC mice. Our data demonstrate an unexpected role of ATG16L1 in coordinating the outcome of IL-22 signaling in the intestinal epithelium.


Assuntos
Proteínas Relacionadas à Autofagia/imunologia , Proteínas de Transporte/imunologia , Interleucinas/imunologia , Mucosa Intestinal/imunologia , Proteínas de Membrana/imunologia , Nucleotidiltransferases/imunologia , Transdução de Sinais/imunologia , Animais , Proteínas Relacionadas à Autofagia/genética , Células CACO-2 , Proteínas de Transporte/genética , Variação Genética , Humanos , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/patologia , Interleucinas/genética , Mucosa Intestinal/patologia , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Nucleotidiltransferases/genética , Transdução de Sinais/genética , Interleucina 22
6.
Oncotarget ; 8(33): 54873-54888, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28903388

RESUMO

Transendothelial cell migration (TEM) is crucial for inflammation and metastasis. The adhesion molecule CD99 was shown to be important for correct immune cell extravasation and is highly expressed on certain cancer cells. Recently, we demonstrated that ectodomain shedding of CD99 by the metalloprotease meprin ß promotes TEM in vitro. In this study, we employed an acute inflammation model (air pouch/carrageenan) and found significantly less infiltrated cells in meprin ß knock-out animals validating the previously observed pro-inflammatory activity. To further analyze the impact of meprin ß on CD99 shedding with regard to cell adhesion and proliferation we characterized two lung cancer associated CD99 variants (D92H, D92Y), carrying point mutations at the main cleavage site. Interestingly, ectodomain shedding of these variants by meprin ß was still detectable. However the cleavage site shifted to adjacent positions. Nevertheless, expression of CD99 variants D92H and D92Y revealed partial misfolding and proteasomal degradation. A previously observed influence of CD99 on Src activation and increased proliferation could not be confirmed in this study, independent of wild-type CD99 or the variants D92H and D92Y. However, we identified meprin ß as a potent inducer of Src phosphorylation. Importantly, we found significantly increased cell migration when expressing the cancer-associated CD99 variant D92H compared to the wild-type protein.

7.
Nat Commun ; 8(1): 2063, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29234056

RESUMO

FOXO3 is consistently annotated as a human longevity gene. However, functional variants and underlying mechanisms for the association remain unknown. Here, we perform resequencing of the FOXO3 locus and single-nucleotide variant (SNV) genotyping in three European populations. We find two FOXO3 SNVs, rs12206094 and rs4946935, to be most significantly associated with longevity and further characterize them functionally. We experimentally validate the in silico predicted allele-dependent binding of transcription factors (CTCF, SRF) to the SNVs. Specifically, in luciferase reporter assays, the longevity alleles of both variants show considerable enhancer activities that are reversed by IGF-1 treatment. An eQTL database search reveals that the alleles are also associated with higher FOXO3 mRNA expression in various human tissues, which is in line with observations in long-lived model organisms. In summary, we present experimental evidence for a functional link between common intronic variants in FOXO3 and human longevity.


Assuntos
Proteína Forkhead Box O3/fisiologia , Longevidade/genética , Polimorfismo de Nucleotídeo Único/genética , População Branca/genética , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Alelos , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Simulação por Computador , Feminino , Proteína Forkhead Box O3/genética , Haplótipos/genética , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Íntrons/genética , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/metabolismo , Fator de Resposta Sérica/genética , Fator de Resposta Sérica/metabolismo
8.
Cell Rep ; 16(8): 2208-2218, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27524624

RESUMO

A plethora of functional and genetic studies have suggested a key role for the IL-23 pathway in chronic intestinal inflammation. Currently, pathogenic actions of IL-23 have been ascribed to specific effects on immune cells. Herein, we unveil a protective role of IL-23R signaling. Mice deficient in IL-23R expression in intestinal epithelial cells (Il23R(ΔIEC)) have reduced Reg3b expression, show a disturbed colonic microflora with an expansion of flagellated bacteria, and succumb to DSS colitis. Surprisingly, Il23R(ΔIEC) mice show impaired mucosal IL-22 induction in response to IL-23. αThy-1 treatment significantly deteriorates colitis in Il23R(ΔIEC) animals, which can be rescued by IL-22 application. Importantly, exogenous Reg3b administration rescues DSS-treated Il23R(ΔIEC) mice by recruiting neutrophils as IL-22-producing cells, thereby restoring mucosal IL-22 levels. The study identifies a critical barrier-protective immune pathway that originates from, and is orchestrated by, IL-23R signaling in intestinal epithelial cells.


Assuntos
Colite/imunologia , Disbiose/imunologia , Interleucinas/imunologia , Mucosa Intestinal/imunologia , Receptores de Interleucina/imunologia , Animais , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/microbiologia , Sulfato de Dextrana , Disbiose/tratamento farmacológico , Disbiose/patologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Regulação da Expressão Gênica , Granulócitos/efeitos dos fármacos , Granulócitos/imunologia , Granulócitos/microbiologia , Interleucina-23/farmacologia , Interleucinas/genética , Interleucinas/farmacologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/microbiologia , Isoanticorpos/farmacologia , Masculino , Camundongos , Camundongos Knockout , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Neutrófilos/microbiologia , Proteínas Associadas a Pancreatite/genética , Proteínas Associadas a Pancreatite/imunologia , Proteínas Associadas a Pancreatite/farmacologia , Receptores de Interleucina/deficiência , Receptores de Interleucina/genética , Transdução de Sinais , Células-Tronco/efeitos dos fármacos , Células-Tronco/imunologia , Células-Tronco/microbiologia , Interleucina 22
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA