Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36616616

RESUMO

In this study, we propose a quantum structure of an associative memory cell for effective data learning based on artificial intelligence. For effective learning of related data, content-based retrieval and storage rather than memory address is essential. A content-addressable memory (CAM), which is an efficient memory cell structure for this purpose, in a quantum computing environment, is designed based on quantum-dot cellular automata (QCA). A CAM cell is composed of a memory unit that stores information, a match unit that performs a search, and a structure, using an XOR gate or an XNOR gate in the match unit, that shows good performance. In this study, we designed an XNOR gate with a multilayer structure based on electron interactions and proposed a QCA-based CAM cell using it. The area and time efficiency are verified through a simulation using QCADesigner, and the quantum cost of the proposed XOR gate and CAM cell were reduced by at least 70% and 15%, respectively, when compared to the latest research. In addition, we physically proved the potential energy owing to the interaction between the electrons inside the QCA cell. We also proposed an additional CAM circuit targeting the reduction in energy dissipation that overcomes the best available designs. The simulation and calculation of power dissipation are performed by QCADesigner-E and it is confirmed that more than 27% is reduced.


Assuntos
Autômato Celular , Metodologias Computacionais , Inteligência Artificial , Teoria Quântica , Eletrônica
2.
Sensors (Basel) ; 22(9)2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35591230

RESUMO

A random number generator (RNG), a cryptographic technology that plays an important role in security and sensor networks, can be designed using a linear feedback shift register (LFSR). This cryptographic transformation is currently done through CMOS. It has been developed by reducing the size of the gate and increasing the degree of integration, but it has reached the limit of integration due to the quantum tunneling phenomenon. Quantum-dot cellular automata (QCA), one of the quantum circuit design technologies to replace this, has superior performance compared to CMOS in most performance areas, such as space, speed, and power. Most of the LFSRs in QCA are designed as shift registers (SR), and most of the SR circuits proposed based on the existing QCA have a planar structure, so the cell area is large and the signal is unstable when a plane intersection is implemented. Therefore, in this paper, we propose a multilayered 2-to-1 QCA multiplexer and a D-latch, and we make blocks based on D-latch and connect these blocks to make SR. In addition, the LFSR structure is designed by adding an XOR operation to it, and we additionally propose an LFSR capable of dual-edge triggering. The proposed structures were completed with a very meticulous design technique to minimize area and latency using cell interaction, and they achieve high performance compared to many existing circuits. For the proposed structures, the cost and energy dissipation are calculated through simulation using QCADesigner and QCADesigner-E, and their efficiency is verified.

3.
Sensors (Basel) ; 13(2): 2131-47, 2013 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-23389344

RESUMO

In this work, active vibration control of an underwater cylindrical shell structure was investigated, to suppress structural vibration and structure-borne noise in water. Finite element modeling of the submerged cylindrical shell structure was developed, and experimentally evaluated. Modal reduction was conducted to obtain the reduced system equation for the active feedback control algorithm. Three Macro Fiber Composites (MFCs) were used as actuators and sensors. One MFC was used as an exciter. The optimum control algorithm was designed based on the reduced system equations. The active control performance was then evaluated using the lab scale underwater cylindrical shell structure. Structural vibration and structure-borne noise of the underwater cylindrical shell structure were reduced significantly by activating the optimal controller associated with the MFC actuators. The results provide that active vibration control of the underwater structure is a useful means to reduce structure-borne noise in water.

4.
Nanomaterials (Basel) ; 12(3)2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35159885

RESUMO

Many studies have addressed the physical limitations of complementary metal-oxide semi-conductor (CMOS) technology and the need for next-generation technologies, and quantum-dot cellular automata (QCA) are emerging as a replacement for nanotechnology. Meanwhile, the divider is the most-used circuit in arithmetic operations with squares and multipliers, and the development of effective dividers is crucial for improving the efficiency of inversion and exponentiation, which is known as the most complex operation. In most public-key cryptography systems, the corresponding operations are used by applying algebraic structures such as fields or groups. In this paper, an improved design of a non-restoring array divider (N-RAD) is proposed based on the promising technology of QCA. Our QCA design is focused on the optimization of dividers using controlled add/subtract (CAS) cells composed of an XOR and full adder. We propose a new CAS cell using a full adder that is designed to be very stable and compact so that power dissipation is minimized. The proposed design is considerably improved in many ways compared with the best existing N-RADs and is verified through simulations using QCADesigner and QCAPro. The proposed full adder reduces the energy loss rate by at least 25% compared to the existing structures, and the divider has about 23%~4.5% lower latency compared to the latest coplanar and multilayer structures.

5.
J Nanosci Nanotechnol ; 14(10): 7526-32, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25942820

RESUMO

Vibration control performance of the ring-stiffened cylindrical shell structure is experimentally evaluated in this work. In order to achieve high control performance, advanced flexible piezoelectric actuator whose commercial name is Macro-Fiber Composite (MFC) is adapted to the shell structure. Governing equation is derived by finite element method and dynamic characteristics are investigated from the modal analysis results. Ring-stiffened cylindrical shell structure is then manufactured and modal test is conducted to verify modal analysis results. An optimal controller is designed and experimentally realized to the proposed shell structure system. Vibration control performance is experimentally evaluated in time domain and verified by simulated control results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA