Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Funct Mater ; 32(24)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35692510

RESUMO

Corneal injuries are a major cause of blindness worldwide. To restore corneal integrity and clarity, there is a need for regenerative bio-integrating materials for in-situ repair and replacement of corneal tissue. Here, we introduce Light-curable COrnea Matrix (LC-COMatrix), a tunable material derived from decellularized porcine cornea extracellular matrix containing un-denatured collagen and sulfated glycosaminoglycans. It is a functionalized hydrogel with proper swelling behavior, biodegradation, and viscosity that can be cross-linked in situ with visible light, providing significantly enhanced biomechanical strength, stability, and adhesiveness. Cross-linked LC-COMatrix strongly adheres to human corneas ex vivo and effectively closes full-thickness corneal perforations with tissue loss. Likewise, in vivo, LC-COMatrix seals large corneal perforations, replaces partial-corneal stromal defects and bio-integrates into the tissue in rabbit models. LC-COMatrix is a natural ready-to-apply bio-integrating adhesive that is representative of native corneal matrix with potential applications in corneal and ocular surgeries.

2.
Adv Funct Mater ; 31(24)2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34335134

RESUMO

Developing and healing tissues begin as a cellular condensation. Spatiotemporal changes in tissue geometry, transformations in the spatial distribution of the cells and extracellular matrix, are essential for its evolution into a functional tissue. 4D materials, 3D materials capable of geometric changes, may have the potential to recreate the aforementioned biological phenomenon. However, most reported 4D materials are non-degradable and/or not biocompatible, which limits their application in regenerative medicine, and to date there are no systems controlling the geometry of high density cellular condensations and differentiation. Here, we describe 4D high cell density tissues based on shape-changing hydrogels. By sequential photocrosslinking of oxidized and methacrylated alginate (OMA) and methacrylated gelatin (GelMA), bi-layered hydrogels presenting controllable geometric changes without any external stimuli were fabricated. Fibroblasts and human adipose-derived stem cells (ASCs) were incorporated at concentrations up to 1.0 × 108 cells/mL to the 4D constructs, and controllable shape changes were achieved in concert with ASCs differentiated down chondrogenic and osteogenic lineages. Bioprinting of the high density cell-laden OMA and GelMA permitted the formation of more complex constructs with defined 4D geometric changes, which may further expand the promise of this approach in regenerative medicine applications.

3.
Small ; 14(25): e1800579, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29782703

RESUMO

Growth factors are potent stimuli for regulating cell function in tissue engineering strategies, but spatially patterning their presentation in 3D in a facile manner using a single material is challenging. Micropatterning is an attractive tool to modulate the cellular microenvironment with various biochemical and physical cues and study their effects on stem cell behaviors. Implementing heparin's ability to immobilize growth factors, dual-crosslinkable alginate hydrogels are micropatterned in 3D with photocrosslinkable heparin substrates with various geometries and micropattern sizes, and their capability to establish 3D micropatterns of growth factors within the hydrogels is confirmed. This 3D micropatterning method could be applied to various heparin binding growth factors, such as fibroblast growth factor-2, vascular endothelial growth factor, transforming growth factor-betas and bone morphogenetic proteins while retaining the hydrogel's natural degradability and cytocompability. Stem cells encapsulated within these micropatterned hydrogels have exhibited spatially localized growth and differentiation responses corresponding to various growth factor patterns, demonstrating the versatility of the approach in controlling stem cell behavior for tissue engineering and regenerative medicine applications.


Assuntos
Hidrogéis/química , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Microtecnologia , Alginatos/química , Proteína Morfogenética Óssea 2/farmacologia , Reagentes de Ligações Cruzadas/química , Heparina/química , Humanos , Células-Tronco Mesenquimais/citologia , Osteogênese/efeitos dos fármacos
4.
bioRxiv ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38712035

RESUMO

Formation of chondromimetic human mesenchymal stem cells (hMSCs) condensations typically required in vitro culture in defined environments. In addition, extended in vitro culture in differentiation media over several weeks is usually necessary prior to implantation, which is costly, time consuming and delays clinical treatment. Here, this study reports on immediately implantable core/shell microgels with a high-density hMSC-laden core and rapidly degradable hydrogel shell. The hMSCs in the core formed cell condensates within 12 hours and the oxidized and methacrylated alginate (OMA) hydrogel shells were completely degraded within 3 days, enabling spontaneous and precipitous fusion of adjacent condensed aggregates. By delivering transforming growth factor-ß1 (TGF-ß1) within the core, the fused condensates were chondrogenically differentiated and formed cartilage microtissues. Importantly, these hMSC-laden core/shell microgels, fabricated without any in vitro culture, were subcutaneously implanted into mice and shown to form cartilage tissue via cellular condensations in the core after 3 weeks. This innovative approach to form cell condensations in situ without in vitro culture that can fuse together with each other and with host tissue and be matured into new tissue with incorporated bioactive signals, allows for immediate implantation and may be a platform strategy for cartilage regeneration and other tissue engineering applications.

5.
Adv Funct Mater ; 23(38): 4765-4775, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-24578678

RESUMO

Micropatterning technology is a powerful tool for controlling the cellular microenvironment and investigating the effects of physical parameters on cell behaviors, such as migration, proliferation, apoptosis, and differentiation. Although there have been significant developments in regulating the spatial and temporal distribution of physical properties in various materials, little is known about the role of the size of micropatterned regions of hydrogels with different crosslinking densities on the response of encapsulated cells. In this study, novel alginate hydrogel system is engineered that can be micropatterned three-dimensionally to create regions that are crosslinked by a single mechanism or dual mechanisms. By manipulating micropattern size while keeping the overall ratio of single- to dual-crosslinked hydrogel volume constant, the physical properties of the micropatterned alginate hydrogels are spatially tunable. When human adipose-derived stem cells (hASCs) are photoencapsulated within micropatterned hydrogels, their proliferation rate is a function of micropattern size. Additionally, micropattern size dictates the extent of osteogenic and chondrogenic differentiation of photoencapsulated hASC. The size of 3D micropatterned physical properties in this new hydrogel system introduces a new design parameter for regulating various cellular behaviors, and this dual-crosslinked hydrogel system provides a new platform for studying proliferation and differentiation of stem cells in a spatially controlled manner for tissue engineering and regenerative medicine applications.

6.
Bioengineering (Basel) ; 10(9)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37760099

RESUMO

The surface zone of articular cartilage is the first area impacted by cartilage defects, commonly resulting in osteoarthritis. Chondrocytes in the surface zone of articular cartilage synthesize and secrete lubricin, a proteoglycan that functions as a lubricant protecting the deeper layers from shear stress. Notably, 3D bioprinting is a tissue engineering technique that uses cells encapsulated in biomaterials to fabricate 3D constructs. Gelatin methacrylate (GelMA) is a frequently used biomaterial for 3D bioprinting cartilage. Oxidized methacrylated alginate (OMA) is a chemically modified alginate designed for its tunable degradation rate and mechanical properties. To determine an optimal combination of GelMA and OMA for lubricin expression, we used our novel high-throughput human articular chondrocyte reporter system. Primary human chondrocytes were transduced with PRG4 (lubricin) promoter-driven Gaussia luciferase, allowing for temporal assessment of lubricin expression. A lubricin expression-driven Design of Experiment screen and subsequent validation identified 14% GelMA/2% OMA for further study. Therefore, DoE optimized 14% GelMA/2% OMA, 14% GelMA control, and 16% GelMA (total solid content control) were 3D bioprinted. The combination of lubricin protein expression and shape retention over the 22 days in culture, successfully determined the 14% GelMA/2%OMA to be the optimal formulation for lubricin secretion. This strategy allows for rapid analysis of the role(s) of biomaterial composition, stiffness or other cell manipulations on lubricin expression by chondrocytes, which may improve therapeutic strategies for cartilage regeneration.

7.
Front Bioeng Biotechnol ; 11: 1111356, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36923455

RESUMO

Poor nutrient transport through the cartilage endplate (CEP) is a key factor in the etiology of intervertebral disc degeneration and may hinder the efficacy of biologic strategies for disc regeneration. Yet, there are currently no treatments for improving nutrient transport through the CEP. In this study we tested whether intradiscal delivery of a matrix-modifying enzyme to the CEP improves solute transport into whole human and bovine discs. Ten human lumbar motion segments harvested from five fresh cadaveric spines (38-66 years old) and nine bovine coccygeal motion segments harvested from three adult steers were treated intradiscally either with collagenase enzyme or control buffer that was loaded in alginate carrier. Motion segments were then incubated for 18 h at 37 °C, the bony endplates removed, and the isolated discs were compressed under static (0.2 MPa) and cyclic (0.4-0.8 MPa, 0.2 Hz) loads while submerged in fluorescein tracer solution (376 Da; 0.1 mg/ml). Fluorescein concentrations from site-matched nucleus pulposus (NP) samples were compared between discs. CEP samples from each disc were digested and assayed for sulfated glycosaminoglycan (sGAG) and collagen contents. Results showed that enzymatic treatment of the CEP dramatically enhanced small solute transport into the disc. Discs with enzyme-treated CEPs had up to 10.8-fold (human) and 14.0-fold (bovine) higher fluorescein concentration in the NP compared to site-matched locations in discs with buffer-treated CEPs (p < 0.0001). Increases in solute transport were consistent with the effects of enzymatic treatment on CEP composition, which included reductions in sGAG content of 33.5% (human) and 40% (bovine). Whole disc biomechanical behavior-namely, creep strain and disc modulus-was similar between discs with enzyme- and buffer-treated CEPs. Taken together, these findings demonstrate the potential for matrix modification of the CEP to improve the transport of small solutes into whole intact discs.

8.
Biomaterials ; 300: 122179, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37315386

RESUMO

Oxygenating biomaterials can alleviate anoxic stress, stimulate vascularization, and improve engraftment of cellularized implants. However, the effects of oxygen-generating materials on tissue formation have remained largely unknown. Here, we investigate the impact of calcium peroxide (CPO)-based oxygen-generating microparticles (OMPs) on the osteogenic fate of human mesenchymal stem cells (hMSCs) under a severely oxygen deficient microenvironment. To this end, CPO is microencapsulated in polycaprolactone to generate OMPs with prolonged oxygen release. Gelatin methacryloyl (GelMA) hydrogels containing osteogenesis-inducing silicate nanoparticles (SNP hydrogels), OMPs (OMP hydrogels), or both SNP and OMP (SNP/OMP hydrogels) are engineered to comparatively study their effect on the osteogenic fate of hMSCs. OMP hydrogels associate with improved osteogenic differentiation under both normoxic and anoxic conditions. Bulk mRNAseq analyses suggest that OMP hydrogels under anoxia regulate osteogenic differentiation pathways more strongly than SNP/OMP or SNP hydrogels under either anoxia or normoxia. Subcutaneous implantations reveal a stronger host cell invasion in SNP hydrogels, resulting in increased vasculogenesis. Furthermore, time-dependent expression of different osteogenic factors reveals progressive differentiation of hMSCs in OMP, SNP, and SNP/OMP hydrogels. Our work demonstrates that endowing hydrogels with OMPs can induce, improve, and steer the formation of functional engineered living tissues, which holds potential for numerous biomedical applications, including tissue regeneration and organ replacement therapy.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Humanos , Diferenciação Celular , Engenharia Tecidual/métodos , Hidrogéis/farmacologia , Hipóxia/metabolismo , Oxigênio/metabolismo
9.
Eur Cell Mater ; 24: 331-43, 2012 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-23070945

RESUMO

Nanofibrous scaffolds are of interest in tissue engineering due to their high surface area to volume ratio, interconnected pores, and architectural similarity to the native extracellular matrix. Our laboratory recently developed a biodegradable, photo-crosslinkable alginate biopolymer. Here, we show the capacity of the material to be electrospun into a nanofibrous matrix, and the ability to enhance cell adhesion and proliferation on these matrices by covalent modification with cell adhesion peptides. Additionally, the potential of covalently incorporating heparin into the hydrogels during the photopolymerisation process to sustain the release of a heparin binding growth factor via affinity interactions was demonstrated. Electrospun photo-crosslinkable alginate nanofibrous scaffolds endowed with cell adhesion ligands and controlled delivery of growth factors may allow for improved regulation of cell behaviour for regenerative medicine.


Assuntos
Implantes Absorvíveis , Alginatos/química , Fator 2 de Crescimento de Fibroblastos/administração & dosagem , Nanofibras/química , Alicerces Teciduais/química , Adesão Celular , Proliferação de Células , Células Cultivadas , Fator 2 de Crescimento de Fibroblastos/química , Fibroblastos/fisiologia , Ácido Glucurônico/química , Heparina/química , Ácidos Hexurônicos/química , Humanos , Polimerização , Engenharia Tecidual , Raios Ultravioleta
10.
Adv Mater ; 34(15): e2109394, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35065000

RESUMO

4D bioprinting is promising to build cell-laden constructs (bioconstructs) with complex geometries and functions for tissue/organ regeneration applications. The development of hydrogel-based 4D bioinks, especially those allowing living cell printing, with easy preparation, defined composition, and controlled physical properties is critically important for 4D bioprinting. Here, a single-component jammed micro-flake hydrogel (MFH) system with heterogeneous size distribution, which differs from the conventional granular microgel, has been developed as a new cell-laden bioink for 4D bioprinting. This jammed cytocompatible MFH features scalable production and straightforward composition with shear-thinning, shear-yielding, and rapid self-healing properties. As such, it can be smoothly printed into stable 3D bioconstructs, which can be further cross-linked to form a gradient in cross-linking density when a photoinitiator and a UV absorber are incorporated. After being subject to shape morphing, a variety of complex bioconstructs with well-defined configurations and high cell viability are obtained. Based on this system, 4D cartilage-like tissue formation is demonstrated as a proof-of-concept. The establishment of this versatile new 4D bioink system may open up a number of applications in tissue engineering.


Assuntos
Bioimpressão , Bioimpressão/métodos , Hidrogéis , Impressão Tridimensional , Engenharia Tecidual/métodos , Alicerces Teciduais
11.
Bioact Mater ; 15: 185-193, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35386348

RESUMO

Recently, 3D bioprinting has been explored as a promising technology for biomedical applications with the potential to create complex structures with precise features. Cell encapsulated hydrogels composed of materials such as gelatin, collagen, hyaluronic acid, alginate and polyethylene glycol have been widely used as bioinks for 3D bioprinting. However, since most hydrogel-based bioinks may not allow rapid stabilization immediately after 3D bioprinting, achieving high resolution and fidelity to the intended architecture is a common challenge in 3D bioprinting of hydrogels. In this study, we have utilized shear-thinning and self-healing ionically crosslinked oxidized and methacrylated alginates (OMAs) as a bioink, which can be rapidly gelled by its self-healing property after bioprinting and further stabilized via secondary crosslinking. It was successfully demonstrated that stem cell-laden calcium-crosslinked OMA hydrogels can be bioprinted into complicated 3D tissue structures with both high resolution and fidelity. Additional photocrosslinking enables long-term culture of 3D bioprinted constructs for formation of functional tissue by differentiation of encapsulated human mesenchymal stem cells.

12.
Sci Adv ; 8(51): eadc8753, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36542703

RESUMO

Salivary gland acinar cells are severely depleted after radiotherapy for head and neck cancer, leading to loss of saliva and extensive oro-digestive complications. With no regenerative therapies available, organ dysfunction is irreversible. Here, using the adult murine system, we demonstrate that radiation-damaged salivary glands can be functionally regenerated via sustained delivery of the neurogenic muscarinic receptor agonist cevimeline. We show that endogenous gland repair coincides with increased nerve activity and acinar cell division that is limited to the first week after radiation, with extensive acinar cell degeneration, dysfunction, and cholinergic denervation occurring thereafter. However, we found that mimicking cholinergic muscarinic input via sustained local delivery of a cevimeline-alginate hydrogel was sufficient to regenerate innervated acini and retain physiological saliva secretion at nonirradiated levels over the long term (>3 months). Thus, we reveal a previously unknown regenerative approach for restoring epithelial organ structure and function that has extensive implications for human patients.

13.
Acta Biomater ; 136: 88-98, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34563721

RESUMO

The mechanical properties of the native extracellular matrix play a key role in regulating cell behavior during developmental, healing and homeostatic processes. Since these properties change over time, it may be valuable to have the capacity to dynamically vary the mechanical properties of engineered hydrogels used in tissue engineering strategies to better mimic the dynamic mechanical behavior of native extracellular matrix. However, in situ repeatedly reversible dynamic tuning of hydrogel mechanics is still limited. In this study, we have engineered a hydrogel system with reversible dynamic mechanics using a dual-crosslinkable alginate hydrogel. The effect of reversible mechanical signals on encapsulated stem cells in dynamically tunable hydrogels has been demonstrated. In situ stiffening of hydrogels decreases cell spreading and proliferation, and subsequent softening of hydrogels gives way to an increase in cell spreading and proliferation. The hydrogel stiffening and softening, and resulting cellular responses are repeatedly reversible. This hydrogel system provides a promising platform for investigating the effect of repeatedly reversible changes in extracellular matrix mechanics on cell behaviors. STATEMENT OF SIGNIFICANCE: Since the mechanical properties of native extracellular matrix (ECM) change over time during development, healing and homeostatic processes, it may be valuable to have the capacity to dynamically control the mechanics of biomaterials used in tissue engineering and regenerative medicine applications to better mimic this behavior. Unlike previously reported biomaterials whose mechanical properties can be changed by the user only a limited number of times, this system provides the capacity to induce unlimited alterations to the mechanical properties of an engineered ECM for 3D cell culture. This study presents a strategy for on-demand dynamic and reversible control of materials' mechanics by single and dual-crosslinking mechanisms using oxidized and methacrylated alginates. By demonstrating direct changes in encapsulated human mesenchymal stem cell morphology, proliferation and chondrogenic differentiation in response to multiple different dynamic changes in hydrogel mechanics, we have established a repeatedly reversible 3D cellular mechanosensing system. This system provides a powerful platform tool with a wide range of stiffness tunability to investigate the role of dynamic mechanics on cellular mechanosensing and behavioral responses.


Assuntos
Técnicas de Cultura de Células em Três Dimensões , Hidrogéis , Alginatos , Matriz Extracelular , Humanos , Engenharia Tecidual
14.
Adv Sci (Weinh) ; 8(9): 2004616, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33977070

RESUMO

Shape-morphing hydrogels bear promising prospects as soft actuators and for robotics. However, they are mostly restricted to applications in the abiotic domain due to the harsh physicochemical conditions typically necessary to induce shape morphing. Here, multilayer hydrogel actuator systems are developed using biocompatible and photocrosslinkable oxidized, methacrylated alginate and methacrylated gelatin that permit encapsulation and maintenance of living cells within the hydrogel actuators and implement programmed and controlled actuations with multiple shape changes. The hydrogel actuators encapsulating cells enable defined self-folding and/or user-regulated, on-demand-folding into specific 3D architectures under physiological conditions, with the capability to partially bioemulate complex developmental processes such as branching morphogenesis. The hydrogel actuator systems can be utilized as novel platforms for investigating the effect of programmed multiple-step and reversible shape morphing on cellular behaviors in 3D extracellular matrix and the role of recapitulating developmental and healing morphogenic processes on promoting new complex tissue formation.


Assuntos
Alginatos/química , Materiais Biocompatíveis/química , Biomimética/métodos , Hidrogéis/química , Morfogênese/fisiologia
15.
Circ Arrhythm Electrophysiol ; 13(10): e008740, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32755466

RESUMO

BACKGROUND: The mesenchymal stem cell (MSC), known to remodel in disease and have an extensive secretome, has recently been isolated from the human heart. However, the effects of normal and diseased cardiac MSCs on myocyte electrophysiology remain unclear. We hypothesize that in disease the inflammatory secretome of cardiac human MSCs (hMSCs) remodels and can regulate arrhythmia substrates. METHODS: hMSCs were isolated from patients with or without heart failure from tissue attached to extracted device leads and from samples taken from explanted/donor hearts. Failing hMSCs or nonfailing hMSCs were cocultured with normal human cardiac myocytes derived from induced pluripotent stem cells. Using fluorescent indicators, action potential duration, Ca2+ alternans, and spontaneous calcium release (SCR) incidence were determined. RESULTS: Failing and nonfailing hMSCs from both sources exhibited similar trilineage differentiation potential and cell surface marker expression as bone marrow hMSCs. Compared with nonfailing hMSCs, failing hMSCs prolonged action potential duration by 24% (P<0.001, n=15), increased Ca2+ alternans by 300% (P<0.001, n=18), and promoted spontaneous calcium release activity (n=14, P<0.013) in human cardiac myocytes derived from induced pluripotent stem cells. Failing hMSCs exhibited increased secretion of inflammatory cytokines IL (interleukin)-1ß (98%, P<0.0001) and IL-6 (460%, P<0.02) compared with nonfailing hMSCs. IL-1ß or IL-6 in the absence of hMSCs prolonged action potential duration but only IL-6 increased Ca2+ alternans and promoted spontaneous calcium release activity in human cardiac myocytes derived from induced pluripotent stem cells, replicating the effects of failing hMSCs. In contrast, nonfailing hMSCs prevented Ca2+ alternans in human cardiac myocytes derived from induced pluripotent stem cells during oxidative stress. Finally, nonfailing hMSCs exhibited >25× higher secretion of IGF (insulin-like growth factor)-1 compared with failing hMSCs. Importantly, IGF-1 supplementation or anti-IL-6 treatment rescued the arrhythmia substrates induced by failing hMSCs. CONCLUSIONS: We identified device leads as a novel source of cardiac hMSCs. Our findings show that cardiac hMSCs can regulate arrhythmia substrates by remodeling their secretome in disease. Importantly, therapy inhibiting (anti-IL-6) or mimicking (IGF-1) the cardiac hMSC secretome can rescue arrhythmia substrates.


Assuntos
Potenciais de Ação , Arritmias Cardíacas/metabolismo , Sinalização do Cálcio , Insuficiência Cardíaca/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Mediadores da Inflamação/metabolismo , Células-Tronco Mesenquimais/metabolismo , Miócitos Cardíacos/metabolismo , Comunicação Parácrina , Adulto , Idoso , Arritmias Cardíacas/patologia , Arritmias Cardíacas/fisiopatologia , Estudos de Casos e Controles , Linhagem da Célula , Células Cultivadas , Técnicas de Cocultura , Feminino , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Cinética , Masculino , Células-Tronco Mesenquimais/patologia , Pessoa de Meia-Idade , Miócitos Cardíacos/patologia , Fenótipo
16.
Acta Biomater ; 113: 130-143, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32505800

RESUMO

Successful osteochondral defect repair requires regenerating the subchondral bone whilst simultaneously promoting the development of an overlying layer of articular cartilage that is resistant to vascularization and endochondral ossification. During skeletal development articular cartilage also functions as a surface growth plate, which postnatally is replaced by a more spatially complex bone-cartilage interface. Motivated by this developmental process, the hypothesis of this study is that bi-phasic, fibre-reinforced cartilaginous templates can regenerate both the articular cartilage and subchondral bone within osteochondral defects created in caprine joints. To engineer mechanically competent implants, we first compared a range of 3D printed fibre networks (PCL, PLA and PLGA) for their capacity to mechanically reinforce alginate hydrogels whilst simultaneously supporting mesenchymal stem cell (MSC) chondrogenesis in vitro. These mechanically reinforced, MSC-laden alginate hydrogels were then used to engineer the endochondral bone forming phase of bi-phasic osteochondral constructs, with the overlying chondral phase consisting of cartilage tissue engineered using a co-culture of infrapatellar fat pad derived stem/stromal cells (FPSCs) and chondrocytes. Following chondrogenic priming and subcutaneous implantation in nude mice, these bi-phasic cartilaginous constructs were found to support the development of vascularised endochondral bone overlaid by phenotypically stable cartilage. These fibre-reinforced, bi-phasic cartilaginous templates were then evaluated in clinically relevant, large animal (caprine) model of osteochondral defect repair. Although the quality of repair was variable from animal-to-animal, in general more hyaline-like cartilage repair was observed after 6 months in animals treated with bi-phasic constructs compared to animals treated with commercial control scaffolds. This variability in the quality of repair points to the need for further improvements in the design of 3D bioprinted implants for joint regeneration. STATEMENT OF SIGNIFICANCE: Successful osteochondral defect repair requires regenerating the subchondral bone whilst simultaneously promoting the development of an overlying layer of articular cartilage. In this study, we hypothesised that bi-phasic, fibre-reinforced cartilaginous templates could be leveraged to regenerate both the articular cartilage and subchondral bone within osteochondral defects. To this end we used 3D printed fibre networks to mechanically reinforce engineered transient cartilage, which also contained an overlying layer of phenotypically stable cartilage engineered using a co-culture of chondrocytes and stem cells. When chondrogenically primed and implanted into caprine osteochondral defects, these fibre-reinforced bi-phasic cartilaginous grafts were shown to spatially direct tissue development during joint repair. Such developmentally inspired tissue engineering strategies, enabled by advances in biofabrication and 3D printing, could form the basis of new classes of regenerative implants in orthopaedic medicine.


Assuntos
Cartilagem Articular , Cabras , Impressão Tridimensional , Animais , Regeneração Óssea , Condrogênese , Camundongos , Camundongos Nus , Engenharia Tecidual , Alicerces Teciduais
17.
Sci Adv ; 6(21): eaaz5913, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32494742

RESUMO

Despite great progress in biomaterial design strategies for replacing damaged articular cartilage, prevention of stem cell-derived chondrocyte hypertrophy and resulting inferior tissue formation is still a critical challenge. Here, by using engineered biomaterials and a high-throughput system for screening of combinatorial cues in cartilage microenvironments, we demonstrate that biomaterial cross-linking density that regulates matrix degradation and stiffness-together with defined presentation of growth factors, mechanical stimulation, and arginine-glycine-aspartic acid (RGD) peptides-can guide human mesenchymal stem cell (hMSC) differentiation into articular or hypertrophic cartilage phenotypes. Faster-degrading, soft matrices promoted articular cartilage tissue formation of hMSCs by inducing their proliferation and maturation, while slower-degrading, stiff matrices promoted cells to differentiate into hypertrophic chondrocytes through Yes-associated protein (YAP)-dependent mechanotransduction. in vitro and in vivo chondrogenesis studies also suggest that down-regulation of the Wingless and INT-1 (WNT) signaling pathway is required for better quality articular cartilage-like tissue production.


Assuntos
Cartilagem Articular , Células-Tronco Mesenquimais , Materiais Biocompatíveis/metabolismo , Cartilagem Articular/metabolismo , Diferenciação Celular , Mecanotransdução Celular/fisiologia , Células-Tronco Mesenquimais/metabolismo , Fenótipo , Células-Tronco , Engenharia Tecidual/métodos
18.
J Am Chem Soc ; 131(26): 9204-6, 2009 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-19530653

RESUMO

The ability to silence the expression of specific genes at a particular location of the body would provide a powerful new therapeutic tool for treatment of diseases such as cancer or for use in regenerative medicine. RNA interference (RNAi) is a gene silencing mechanism where specific mRNA molecules that are complementary to short interfering RNA (siRNA) are degraded, thus inhibiting gene expression at the post-transcriptional level. However, the use of siRNA has not yet realized its full clinical potential due to degradation in vivo, the difficulty retaining siRNA at the site of interest, and the relatively short-term effect it has on rapidly dividing cells. In this work a new paradigm is presented that will allow for the localized delivery of siRNA that is controlled and sustained over time, thus allowing cells at the site of interest to be directly exposed to a gradual release of bioactive siRNA. To accomplish this, three different types of macroscopic, degradable biomaterial hydrogel scaffolds were employed: calcium crosslinked alginate, photocrosslinked alginate, and collagen. Differing rates of release from these hydrogels were achieved, and the ability of the released siRNA to knock down the expression of GFP in cells that constitutively express this protein was shown. Furthermore, the ability to encapsulate cells within these materials and achieve sustained gene silencing of these incorporated cells was demonstrated. These biopolymer hydrogels are injectable and, therefore, can be delivered in a minimally invasive manner, and they can serve as delivery vehicles for both siRNA and transplanted cell populations.


Assuntos
Preparações de Ação Retardada/química , Hidrogéis/química , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Alginatos/química , Linhagem Celular , Colágeno/química , Difusão , Genes Reporter , Ácido Glucurônico/química , Proteínas de Fluorescência Verde/genética , Ácidos Hexurônicos/química , Humanos , Rim/citologia , Interferência de RNA , RNA Interferente Pequeno/química , Transfecção
19.
Mater Horiz ; 6(8): 1625-1631, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32864142

RESUMO

Scaffold-free engineering of three-dimensional (3D) tissue has focused on building sophisticated structures to achieve functional constructs. Although the development of advanced manufacturing techniques such as 3D printing has brought remarkable capabilities to the field of tissue engineering, technology to create and culture individual cell only-based high-resolution tissues, without an intervening biomaterial scaffold to maintain construct shape and architecture, has been unachievable to date. In this report, we introduce a cell printing platform which addresses the aforementioned challenge and permits 3D printing and long-term culture of a living cell-only bioink lacking a biomaterial carrier for functional tissue formation. A biodegradable and photocrosslinkable microgel supporting bath serves initially as a fluid, allowing free movement of the printing nozzle for high-resolution cell extrusion, while also presenting solid-like properties to sustain the structure of the printed constructs. The printed human stem cells, which are the only component of the bioink, couple together via transmembrane adhesion proteins and differentiate down tissue-specific lineages while being cultured in a further photocrosslinked supporting bath to form bone and cartilage tissue with precisely controlled structure. Collectively, this system, which is applicable to general 3D printing strategies, is a paradigm shift for printing of scaffold-free individual cells, cellular condensations and organoids, and may have far reaching impact in the fields of regenerative medicine, drug screening, and developmental biology.

20.
Mater Today Chem ; 12: 61-70, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30778400

RESUMO

Cell-laden microgels have been used as tissue building blocks to create three-dimensional (3D) tissues and organs. However, traditional assembly methods can not be used to fabricate functional tissue constructs with biomechanical and structural complexity. In this study, we present directed assembly of cell-laden dual-crosslinkable alginate microgels comprised of oxidized and methacrylated alginate (OMA). Cell-laden OMA microgels can be directly assembled into well-defined 3D shapes and structures under low-level ultraviolet light. Stem cell-laden OMA microgels can be successfully cryopreserved for long-term storage and on-demand applications, and the recovered encapsulated cells maintained equivalent viability and functionality to the freshly processed stem cells. Finally, we have successfully demonstrated that cell-laden microgels can be assembled into complicated 3D tissue structures via freeform reversible embedding of suspended hydrogels (FRESH) 3D bioprinting. This highly innovative bottom-up strategy using FRESH 3D bioprinting of cell-laden OMA microgels, which are cryopreservable, provides a powerful and highly scalable tool for fabrication of customized and biomimetic 3D tissue constructs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA