RESUMO
The impact of topological defects associated with grain boundaries (GB defects) on the electrical, optical, magnetic, mechanical and chemical properties of nanocrystalline materials1,2 is well known. However, elucidating this influence experimentally is difficult because grains typically exhibit a large range of sizes, shapes and random relative orientations3-5. Here we demonstrate that precise control of the heteroepitaxy of colloidal polyhedral nanocrystals enables ordered grain growth and can thereby produce material samples with uniform GB defects. We illustrate our approach with a multigrain nanocrystal comprising a Co3O4 nanocube core that carries a Mn3O4 shell on each facet. The individual shells are symmetry-related interconnected grains6, and the large geometric misfit between adjacent tetragonal Mn3O4 grains results in tilt boundaries at the sharp edges of the Co3O4 nanocube core that join via disclinations. We identify four design principles that govern the production of these highly ordered multigrain nanostructures. First, the shape of the substrate nanocrystal must guide the crystallographic orientation of the overgrowth phase7. Second, the size of the substrate must be smaller than the characteristic distance between the dislocations. Third, the incompatible symmetry between the overgrowth phase and the substrate increases the geometric misfit strain between the grains. Fourth, for GB formation under near-equilibrium conditions, the surface energy of the shell needs to be balanced by the increasing elastic energy through ligand passivation8-10. With these principles, we can produce a range of multigrain nanocrystals containing distinct GB defects.
RESUMO
The development of hydrogen (H2) gas sensors is essential for the safe and efficient adoption of H2 gas as a clean, renewable energy source in the challenges against climate change, given its flammability and associated safety risks. Among various H2 sensors, gasochromic sensors have attracted great interest due to their highly intuitive and low power operation, but slow kinetics, especially slow recovery rate limited its further practical application. This study introduces Pd-decorated amorphous WO3 nanorods (Pd-WO3 NRs) as an innovative gasochromic H2 sensor, demonstrating rapid and highly reversible color changes for H2 detection. In specific, the amorphous nanostructure exhibits notable porosity, enabling rapid detection and recovery by facilitating effective H2 gas interaction and efficient diffusion of hydrogen ions (H+) dissociated from the Pd nanoparticles (Pd NPs). The optimized Pd-WO3 NRs sensor achieves an impressive response time of 14 s and a recovery time of 1 s to 5% H2. The impressively fast recovery time of 1 s is observed under a wide range of H2 concentrations (0.2-5%), making this study a fundamental solution to the challenged slow recovery of gasochromic H2 sensors.
RESUMO
Copper-based catalysts have different catalytic properties depending on the oxidation states of Cu. We report operando observations of the Cu(111) oxidation processes using near-ambient pressure scanning tunneling microscopy (NAP-STM) and near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS). The Cu(111) surface was chemically inactive to water vapor, but only physisorption of water molecules was observed by NAP-STM. Under O2 environments, dry oxidation started at the step edges and proceeded to the terraces as a Cu2O phase. Humid oxidation of the H2O/O2 gas mixture was also promoted at the step edges to the terraces. After the Cu2O covered the surface under humid conditions, hydroxides and adsorbed water layers formed. NAP-STM observations showed that Cu2O was generated at lower steps in dry oxidation with independent terrace oxidations, whereas Cu2O was generated at upper steps in humid oxidation. The difference in the oxidation mechanisms was caused by water molecules. When the surface was entirely oxidized, the diffusion of Cu and O atoms with a reconstruction of the Cu2O structures induced additional subsurface oxidation. NAP-XPS measurements showed that the Cu2O thickness in dry oxidation was greater than that in humid oxidation under all pressure conditions.
Assuntos
Cobre , Vapor , Oxirredução , Cobre/química , GasesRESUMO
Beamline 8A (BLâ 8A) is an undulator-based soft X-ray beamline at Pohang Accelerator Laboratory. This beamline is aimed at high-resolution ambient-pressure X-ray photoelectron spectroscopy (AP-XPS), soft X-ray absorption spectroscopy (soft-XAS) and scanning photoemission microscopy (SPEM) experiments. BLâ 8A has two branches, 8A1 SPEM and 8A2 AP-XPS, that share a plane undulator, the first mirror (M1) and the monochromator. The photon beam is switched between the two branches by changing the refocusing mirrors after the monochromator. The acceptance angle of M1 is kept glancing at 1.2°, and Pt is coated onto the mirrors to achieve high reflectance, which ensures a wide photon energy range (100-2000â eV) with high resolution at a photon flux of â¼1013â photonsâ s-1. In this article, the main properties and performance of the beamline are reported, together with selected experiments performed on the new beamline and experimental system.
RESUMO
The development of high performance gas sensors that operate at room temperature has attracted considerable attention. Unfortunately, the conventional mechanism of chemiresistive sensors is restricted at room temperature by insufficient reaction energy with target molecules. Herein, novel strategy for room temperature gas sensors is reported using an ionic-activated sensing mechanism. The investigation reveals that a hydroxide layer is developed by the applied voltages on the SnO2 surface in the presence of humidity, leading to increased electrical conductivity. Surprisingly, the experimental results indicate ideal sensing behavior at room temperature for NO2 detection with sub-parts-per-trillion (132.3 ppt) detection and fast recovery (25.7 s) to 5 ppm NO2 under humid conditions. The ionic-activated sensing mechanism is proposed as a cascade process involving the formation of ionic conduction, reaction with a target gas, and demonstrates the novelty of the approach. It is believed that the results presented will open new pathways as a promising method for room temperature gas sensors.
RESUMO
Information on cholesterol intake through restaurant meal is of high concern because of increasing eat-out population. Since nutrient labeling is not mandatory for restaurant food in Korea, cholesterol database on restaurant menu is unavailable. This study was performed to construct regional and national cholesterol database on primary Korean restaurant foods including 30 soup/stew, 24 rice dishes, and 27 noodles. From 2009 to 2012, Korea Ministry of Food and Drug Safety collected total 5832 foods (81 food types ×6 regions ×12 restaurants) nationwide and then 486 composites representing food types and regions were prepared for cholesterol analysis. Cholesterol contents of 486 composite samples were highly affected by recipe, food type, seasonality of ingredients, and geographical location, showing the range of 1.1-143.0, 1.5-85.1, and 0.4-62.2 mg/100 g for soup/stew, rice dishes, and noodles, respectively. The highest cholesterol value was observed in Al-tang (spicy fish roe soup) while Maemil-guksu (buckwheat noodle in beef stock) showed the lowest among all samples. Most foods contain relatively low cholesterol content, but the serving size and consumption frequency of dishes should be considered in order not to exceed the recommended daily intake limit (300 mg cholesterol). Saponification coupled with gas chromatography applied for cholesterol analysis was reliable based on accuracy (95% > recovery) and precision (repeatability <4% and reproducibility <8%). Quality control chart monitored for 4 years showed that all analyses were under the control. This study provides reliable and representative cholesterol contents of Korean restaurant key foods, which can be utilized for assessments of cholesterol intake in the current Korean diet.
RESUMO
Ambient-Pressure X-ray Photoelectron Spectroscopy (AP-XPS) and Infrared Reflection Absorption Spectroscopy (AP-IRRAS) have been used to elucidate the active sites and mechanistic steps associated with the ethanol steam reforming reaction (ESR) over Ni-CeO2(111) model catalysts. Our results reveal that surface layers of the ceria substrate are both highly reduced and hydroxylated under reaction conditions while the small supported Ni nanoparticles are present as Ni(0)/NixC. A multifunctional, synergistic role is highlighted in which Ni, CeOx and the interface provide an ensemble effect in the active chemistry that leads to H2. Ni(0) is the active phase leading to both C-C and C-H bond cleavage in ethanol and it is also responsible for carbon accumulation. On the other hand, CeOx is important for the deprotonation of ethanol/water to ethoxy and OH intermediates. The active state of CeOx is a Ce(3+)(OH)x compound that results from extensive reduction by ethanol and the efficient dissociation of water. Additionally, we gain an important insight into the stability and selectivity of the catalyst by its effective water dissociation, where the accumulation of surface carbon can be mitigated by the increased presence of surface OH groups. The co-existence and cooperative interplay of Ni(0) and Ce(3+)(OH)x through a metal-support interaction facilitate oxygen transfer, activation of ethanol/water as well as the removal of coke.
RESUMO
Electrodes in galvanic and electrolytic energy cells are complicated structures comprising redox-active materials, ionic/electronic conductors, and porous pathways for mass transfer of reactants. In contrast to breakthroughs in component development, methods of optimizing whole-system architectural design to draw maximum output have not been well explored. In this Minireview, we introduce generalized types of electrode architecture, discuss fabrication strategies, and characterize already built structures. Systematic efforts to discover optimal electrode configurations will resolve long-standing discrepancies that arise between whole systems and the sums of their parts for a number of electrochemical reactions and technologies.
RESUMO
Electrochemical conversion of carbon dioxide (CO2) to small organic fuels (e.g. formate, methanol, ethylene, ethanol) is touted as one of the most promising approaches for solving the problems of climate change and energy security. In this study, we report the highly efficient electrochemical reduction of CO2 using cuprous oxide (Cu2O) electrodes to produce ethylene (C2H4) primarily. During CO2 electrolysis using electrodeposited Cu2O on a carbon electrode, we observe the transformation of a compact metal oxide layer to a metal oxide structure with oxygen vacant sites at the bulk region. In contrast to previous studies, our results clearly indicate that Cu2O remains at the surface of the catalyst and it efficiently catalyzes the conversion process of CO2 at low overpotential, exhibiting a high selective faradaic efficiency of over 20% towards C2H4 formation even in long-term electrolysis.
RESUMO
Co oxides are known to be active and stable alternative anode electrocatalysts possessing the potential to replace the best performing but most expensive Ir and Ru oxides in alkaline water electrolysis. Of late, Co oxides loaded on various carbon supports have been reported as a way to outperform Ir or Ru catalysts by improving the utilization efficiency. In this study, we introduce Co and Fe nanoparticles embedded carbon nanofibers (CoFe-CNFs), fabricated through electrospinning and pyrolysis of a polymer mixed with Co and Fe precursors. This method is a facile route for simultaneously making Co and Fe nanoparticles as well as the stable accommodation of the CoFe nanoparticles in the carbon support. We demonstrate the potential of the CoFe-CNFs as active and stable electrocatalysts for the oxygen evolution reaction (OER) in alkaline media. We conducted detailed physico-chemical characterizations to elucidate the effect of the CNFs on the OER activity and stability of the CoFe-CNFs. It is suggested that the CNFs are a medium in which OER-active CoFe alloy nanoparticles are formed homogeneously, and that carbon layers surrounding the nanoparticles are beneficial to the stability of the CoFe-CNFs in the OER.
RESUMO
Currently, new agri-tech has been developed and adapted for the cultivation of crops using smart farming technologies, e.g., plant factories and hydroponics. Kelp (Laminaria japonica), which has a high industrial value, was considered as an alternative to chemicals for its eco-friendly and sustainably wide use in crop cultivation. In this study, a fermented kelp (FK) was developed for use in hydroponics. The FK contained various free and protein-bound amino acid compositions produced by fermenting the kelp with Saccharomyces cerevisiae. Supplementing FK as an aeroponic medium when cultivating ginseng sprouts (GSs) elevated the total phenolic and flavonoid contents. Additionally, seven ginsenosides (Rg1, Re, Rb1, Rc, Rg2, Rb2, and Rd) in GSs cultivated with FK in a smart-farm system were identified and quantified by a high-performance liquid chromatography-evaporative light scattering detector/mass spectrometry analysis. Administering FK significantly increased the ginsenosides in the GSs compared to the control group, which was cultivated with tap water. These results indicate the FK administration contributed to the increased accumulation of ginsenosides in the GSs. Overall, this study suggests that FK, which contains abundant nutrients for plant growth, can be used as a novel nutrient solution to enhance the ginsenoside content in GSs during hydroponic cultivation.
RESUMO
In this study, we performed the CO2 reduction reaction (CO2RR) using a structural composite catalyst of cuprous oxide (Cu2O) and silver (Ag) that was simultaneously electrodeposited. While the underneath Ag electrodeposits maintained their spiky backbone structures even after the CO2RR, the Cu2O deposits were reduced to Cu(111) and relocated on the backbone template. The structural changes in Cu2O to Cu increase the active area of the Cu-Ag interface, resulting in a remarkable production rate of 125.01 µmol h-1 of liquid C2+ chemicals via the stabilization of the C-C coupling of the key intermediate species of acetaldehyde. This study provides new insights into designing a bimetallic catalyst for producing sustainable C2+ products from CO2 without any selectivity towards the production of methane.
RESUMO
Solid oxide fuel cells (SOFCs) stand out in sustainable energy systems for their unique ability to efficiently utilize hydrocarbon fuels, particularly those from carbon-neutral sources. CeO2-δ (ceria) based oxides embedded in SOFCs are recognized for their critical role in managing hydrocarbon activation and carbon coking. However, even for the simplest hydrocarbon molecule, CH4, the mechanism of electrochemical oxidation at the ceria/gas interface is not well understood and the capability of ceria to electrochemically oxidize methane remains a topic of debate. This lack of clarity stems from the intricate design of standard metal/oxide composite electrodes and the complex nature of electrode reactions involving multiple chemical and electrochemical steps. This study presents a Sm-doped ceria thin-film model cell that selectively monitors CH4 direct-electro-oxidation on the ceria surface. Using impedance spectroscopy, operando X-ray photoelectron spectroscopy, and density functional theory, it is unveiled that ceria surfaces facilitate CâH bond cleavage and that H2O formation is key in determining the overall reaction rate at the electrode. These insights effectively address the longstanding debate regarding the direct utilization of CH4 in SOFCs. Moreover, these findings pave the way for an optimized electrode design strategy, essential for developing high-performance, environmentally sustainable fuel cells.
RESUMO
Preventing disease and maintaining the health of the elderly are crucial goals for an aging population, with obesity and immune function restoration being of paramount importance. Obesity, particularly visceral obesity characterized by excessive fat accumulation around the abdominal organs, is linked to chronic conditions such as diabetes, hypertension, cardiovascular diseases, and immune dysfunction. Globally, obesity is considered a disease, prompting significant research interest in its treatment. Therefore, it is essential to explore potential therapeutic and preventive strategies to address obesity and the decline in immune function brought about by aging. Tenebrio molitor larvae (TML), commonly known as 'mealworms,' are rich in unsaturated fatty acids, including oleic and linoleic acids, and essential amino acids, such as isoleucine and tyrosine. In this study, we aimed to investigate the effects of the consumption of TML oil and mealworm fermented extract (MWF-1) on obesity and immunological changes in aged obese mice. Our data showed reduced body fat in 23-week-old C57BL/6 mice fed processed TML products for 6 weeks. Additionally, the characteristically high levels of serum triglycerides decreased by treating with TML oil. The immune responsiveness results confirmed an increase in B cells by treating with MWF-1, while cytokine levels (interferon-gamma, tumor necrosis factor-alpha, interleukin-2, and -6) were restored to levels similar to young mice. These results suggest that TML oil and MWF-1 are promising dietary supplements for addressing obesity and restoring immune function.
RESUMO
Simple temperature-regulated chemical vapor deposition was used to disperse iron oxide nanoparticles on porous Al2O3 to create an Fe-oxide/Al2O3 structure for catalytic NH3 oxidation. The Fe-oxide/Al2O3 achieved nearly 100% removal of NH3, with N2 as a major reaction product at temperatures above 400 °C and negligible NOx emissions at all experimental temperatures. The results of a combination of in situ diffuse reflectance infrared Fourier-transform spectroscopy and near-ambient pressure-near-edge X-ray absorption fine structure spectroscopy suggest a N2H4-mediated oxidation mechanism of NH3 to N2 via the Mars-van Krevelen pathway on the Fe-oxide/Al2O3 surface. As a catalytic adsorbent-an energy-efficient approach to reducing NH3 levels in living environments via adsorption and thermal treatment of NH3-no harmful NOx emissions were produced during the thermal treatment of the NH3-adsorbed Fe-oxide/Al2O3 surface, while NH3 molecularly desorbed from the surface. A system with dual catalytic filters of Fe-oxide/Al2O3 was designed to fully oxidize this desorbed NH3 to N2 in a clean and energy-efficient manner.
RESUMO
Compared to hydrogen oxidation reaction, oxygen reduction reaction (ORR) is a sluggish reaction in the proton exchange membrane fuel cell. Many studies have focused on the development of complex synthesis methods for new catalysts. In this study, we introduce a simple catalyst layer preparation method using an additive based on physical mixing for facile ORR in acid media. N-doped carbon containing mainly pyridinic N was used as the additive in the Pt or PtCo catalyst layer. The adjacent pyridinic N near the Pt catalyst works as a Lewis base and removes hydroxyl ions from Pt, thus leading to the simultaneous suppression of Pt oxidation. Based on electrochemical and spectroscopic analyses, we found that pyridinic N reacts with hydroxyl ions and is oxidized. Consequently, Pt catalyst without Pt oxide species exhibited higher ORR activity than pristine Pt or PtCo catalyst.
RESUMO
Citrus peels are generally discarded as waste, although they are rich sources of health-promoting compounds. This study investigated the properties of citrus peels for development as a potential functional tea ingredient. Three citrus peel powders (DCPPs, Cheonhyehyang, Hallabong, and orange) which were dried by air- and freeze-drying, were used to prepare machine-drip tea. Then, total polyphenol compounds (TPCs), flavonoids, and the DPPH radical scavenging activity of DCPPs and teas were evaluated. Freeze-dried DCPPs had relatively higher TPC s (16.47-21.11 mg GAE/g) and DPPH radical scavenging activity (3.25-16.43 mg GAE/g) than air-dried DCPPs; TPCs (14.06-19.12 mg GAE/g) and DPPH radical scavenging activity (1.80-3.22 mg GAE/g). In contrast, air-dried DCPPs were more effective in machine-drip teas, showing a higher range of TPCs (50.64-85.12 mg GAE/100 mL) and DPPH radical scavenging activity (1.05-3.86 mg GAE/100 mL) than freeze-dried DCPPs; TPCs (40.44-46.69 mg GAE/100 mL) and DPPH radical scavenging activity (0.56-1.08 mg GAE/100 mL). Among citrus varieties, Cheonhyehyang had the highest TPCs and DPPH radical scavenging activity in both DCPP and tea. Four flavonoids (Hesperidin, Naringin, Nobiletin, and Tangeretin) mainly existed in citrus peels. The amount of hesperidin was highest; therefore, Hallabong and orange exhibited higher total flavonoid contents. However, freeze-dried Cheonhyehyang peel and air-dried Cheonhyehyang tea, which showed the highest TPCs and DPPH radical scavenging activity, had higher nobiletin and tangeretin. This implies that nobiletin and tangeretin strongly influenced the antioxidant activity of citrus peels with TPC. This research provides essential information for the tea industry looking for functional ingredients. In addition, it helps to reduce by-products by using citrus peel powders.
RESUMO
Increased viscosity of concentrated contrast media (CM) in the renal tubules can perturb renal hemodynamics and have a detrimental effect on tubular epithelial cells. However, the effects of viscosity on contrast-induced nephropathy (CIN) remain poorly understood. Conventional in vitro culture studies do not reflect the rheological properties of CM. Therefore, we investigated the effects of CM viscosity on renal tubules using a kidney-on-a-chip and two different types of CM. Renal proximal tubule epithelial cells (RPTEC) were cultured in a three-dimensional microfluidic culture platform under bidirectional fluid shear stress. We treated the RPTEC with two types of CM: low- (LOCM, iopromide) and iso-osmolar contrast media (IOCM, iodixanol). Renal tubular cell injury induced by LOCM and IOCM was examined under different iodine concentrations (50-250 mgI/mL) and shear-stress conditions. LOCM showed a significant dose-dependent cytotoxic effect, which was significantly higher than that of IOCM under static and low-to-moderate shear stress conditions. However, high shear-stress resulted in reduced cell viability in IOCM; no difference between IOCM and LOCM was found under high shear-stress conditions. The cytotoxic effects were pronounced at a mean shear stress of 1 dyn/cm2 or higher. The high viscosity of IOCM slowed the fluid flow rate and augmented fluid shear-stress. We suggest an alternative in vitro model of CIN using the three-dimensional kidney-on-a-chip. Our results indicate a vital role of viscosity-induced nephrotoxicity under high shear-stress conditions, contrary to the findings of conventional in vitro studies.
RESUMO
We investigated the origin of the reactive surface of Pd catalysts during the electrocatalytic oxidation of formic acid. XPS analysis was the primary tool adapted to characterize the surface changes in Pd catalysts arising from interactions with formic acid. Pd catalysts showed fast deactivation, though their activity could be simply recovered by applying a reduction potential at which hydrogen evolution reaction can occur. XPS analysis revealed that the surface of Pd catalysts is significantly affected by interaction with formic acid, thus confirming that the surface coverage of oxygen species plays an important role in formic acid electrooxidation on the Pd catalysts. At the same time, mass transfer of formic acid also has an effect on the deactivation of Pd catalysts.
RESUMO
The most promising technique for directly converting solar energy into clean fuels and environmental remediation by organic dye degradation is photoelectrochemical (PEC) process. We introduced Sn4+/Ti4+ doped α-Fe2O3@CuxO heterojunction photoanode with complete optimization for PEC hydrogen (H2) generation and organic dye degradation. Improvement of photocurrent photo and reducing overpotentials under optimized conditions lead to enhancing PEC performances, degradation efficiency of organic compounds, and H2 generation generation rate. The optimized heterojunction photoanode (5TiFe@CuxO-D) showed IPCE exceeding 42% compared with pristine hematite (Fe0.01-8006h) nanostructures (28%). Additionally, all the optimized photoanodes showed higher PEC stability for 10 h. Time-resolved PL spectra confirm the improved average lifetime for heterojunction photoanodes, supporting the enhanced PEC performance. Optimized 5TiFe@CuxO-D material achieved PEC H2 generation of â¼300 µL h-1.cm-2 which is two times higher than pristine hematite's activity (150 µL h-1.cm-2) and almost 99% degradation efficiency within 120 min of irradiation time. Therefore, a state-of-the-art study has been explored for hematite-based heterojunction photoanodes reflecting the superior PEC performance and hydrogen, methyl orange (MO) dye degradation activities. The improved results were reported because of stable morphology and better crystallinity acquired through systematic investigation of thermal effects and hydrothermal duration, improved electrical properties by Sn/Ti doping into the lattice of α-Fe2O3 and optimization of CuxO deposition methods. The formation of well-defined heterojunction minimizes the recombination of the charge carrier and leads to effective transportation of excited electrons for the enhanced PEC performance.