Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Dev Med Child Neurol ; 64(4): 469-475, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34658010

RESUMO

AIM: To understand associations among bone mineral density (BMD), bone mineral content (BMC), and bone area, and their association with fractures in adults with cerebral palsy (CP). METHOD: This retrospective cohort study included 78 adults with CP with a hip dual energy X-ray absorptiometry (DXA) from 1st December 2012 to 3rd May 2021 performed at the University of Michigan. Data-driven logistic regression techniques identified which, if any, DXA-derived bone traits (e.g. age/sex/ethnicity-based z-scores) were associated with fracture risk by sex and severity of CP. BMC-area associations were examined to study the structural mechanisms of fragility. RESULTS: Femoral neck area was associated with lower age-adjusted odds ratios (ORs) of fracture history (OR 0.72; 95% confidence interval [CI] 0.49-1.06; p=0.098), while higher BMD was associated with higher odds of incident fracture (OR 3.08; 95% CI 1.14-8.33; p=0.027). Females with fracture had lower area than females without fracture but similar BMC, whereas males with fracture had larger area and higher BMC than males without fracture. The paradoxical BMD-fracture association may be due to artificially elevated BMD from BMC-area associations that differed between females and males (sex interaction, p˂0.05): males had higher BMC at lower area values and lower BMC at higher area values compared to females. INTERPRETATION: BMD alone may not be adequate to evaluate bone strength for adults with CP. Further research into associations (or integration) between BMC and area is needed.


Assuntos
Paralisia Cerebral , Fraturas Ósseas , Absorciometria de Fóton/métodos , Adulto , Densidade Óssea , Paralisia Cerebral/complicações , Feminino , Fraturas Ósseas/epidemiologia , Fraturas Ósseas/etiologia , Humanos , Masculino , Estudos Retrospectivos
2.
Curr Osteoporos Rep ; 19(5): 542-552, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34269975

RESUMO

PURPOSE OF REVIEW: Image-based measurements of bone integrity are used to estimate failure properties and clinical fracture risk. This paper (1) reviews recent imaging studies that have enhanced our understanding of the mechanical pathways to bone fracture and (2) discusses the influence that inter-individual differences in image-based measurements may have on the clinical assessment of fracture risk RECENT FINDINGS: Increased tissue mineralization is associated with improved bone strength but reduced fracture toughness. Trabecular architecture that is important for fatigue resistance is less important for bone strength. The influence of porosity on bone failure properties is heavily dependent on pore location and size. The interaction of various characteristics, such as bone area and mineral content, can further complicate their influence on bone failure properties. What is beneficial for bone strength is not always beneficial for bone toughness or fatigue resistance. Additionally, given the large amount of imaging data that is clinically available, there is a need to develop effective translational strategies to better interpret non-invasive measurements of bone integrity.


Assuntos
Densidade Óssea , Fraturas Ósseas/diagnóstico por imagem , Fraturas Ósseas/etiologia , Absorciometria de Fóton , Humanos , Porosidade , Tomografia Computadorizada por Raios X
3.
J Struct Biol ; 212(3): 107650, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33096230

RESUMO

Understanding skeletal aging and predicting fracture risk is increasingly important with a growing elderly population. We hypothesized that when categorized by external bone size, the male femoral diaphysis would show different strength-age trajectories which can be explained by changes in morphology, composition and collagen cross-linking. Cadaveric male femora were sorted into narrow (n = 15, 26-89 years) and wide (n = 15, 29-82 years) groups based upon total cross-sectional area of the mid-shaft normalized to bone length (Tt.Ar/Le) and tested for whole bone strength, tissue-level strength, and tissue-level post-yield strain. Morphology, cortical TMD (Ct.TMD), porosity, direct measurements of enzymatic collagen cross-links, and pentosidine were obtained. The wide group alone showed significant negative correlations with age for tissue-level strength (R2 = 0.50, p = 0.002), tissue-level post-yield strain (R2 = 0.75, p < 0.001) and borderline significance for whole bone strength (R2 = 0.14, p = 0.108). Ct.TMD correlated with whole bone and tissue-level strength for both groups, but pentosidine normalized to enzymatic cross-links correlated negatively with all mechanical properties for the wide group only. The multivariate analysis showed that just three traits for each mechanical property explained the majority of the variance for whole bone strength (Ct.Area, Ct.TMD, Log(PEN/Mature; R2 = 0.75), tissue-level strength (Age, Ct.TMD, Log(DHLNL/HLNL); R2 = 0.56), and post-yield strain (Age, Log(Pyrrole), Ct.Area; R2 = 0.51). Overall, this highlights how inter-individual differences in bone structure, composition, and strength change with aging and that a one-size fits all understanding of skeletal aging is insufficient.


Assuntos
Densidade Óssea/fisiologia , Fêmur/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/metabolismo , Envelhecimento/fisiologia , Colágeno/metabolismo , Fêmur/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade
5.
Connect Tissue Res ; 56(2): 106-19, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25646568

RESUMO

Advances in computed tomography (CT) imaging are opening new avenues toward more precise characterization and quantification of connective tissue microarchitecture. In the last two decades, micro-computed tomography (microCT) has significantly augmented destructive methods for the 3D micro-analysis of tissue structure, primarily in the bone research field. Recently, microCT has been employed in combination with contrast agents to generate contrast-enhanced images of soft tissues that are otherwise difficult to visualize due to their native radiodensity. More recent advances in CT technology have enabled ultra-high resolution imaging by utilizing a more powerful nano-focused X-ray source, such as that found in nano-computed tomography (nanoCT) systems. NanoCT imaging has facilitated the expansion of musculoskeletal research by reducing acquisition time and significantly expanding the range of samples that can be imaged in terms of size, age and tissue-type (bone, muscle, tendon, cartilage, vessels and adipose tissue). We present the application and early results of nanoCT imaging in various tissue types and how this ultra-high resolution imaging modality is capable of characterizing microstructures at levels of details previously not possible. Contrast-enhanced imaging techniques to enable soft-tissue visualization and characterization are also outlined.


Assuntos
Osso e Ossos/citologia , Processamento de Imagem Assistida por Computador , Microtomografia por Raio-X , Animais , Cartilagem , Tecido Conjuntivo , Humanos , Imageamento Tridimensional/métodos
6.
Clin Orthop Relat Res ; 473(8): 2540-7, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25739343

RESUMO

BACKGROUND: The risk of fragility fractures in the United States is approximately 2.5 times greater among black and white women compared with their male counterparts. On average, men of both ethnicities have wider bones of greater cortical mass compared with the narrower bones of lower cortical mass among women. However, it remains uncertain whether the low cortical area observed in the long bones of women is consistent with their narrower bone diameter or if their cortical area is reduced beyond that which is expected for the sex differences in body size and external bone size. QUESTIONS/PURPOSES: We asked (1) do black and white women consistently have narrower bones of less strength across long bones compared with black and white men; and (2) do all long bones of black and white women have reduced cortical area compared with black and white men? METHODS: Peripheral quantitative CT was used to quantify bone strength and cross-sectional morphology from the major long bones of 125 white and 115 black adult men and women (20-35 years of age). Regression analyses were used to test for differences in bone strength and cortical area after for adjusting for either body size, bone size, or both. RESULTS: After adjusting bone strength for body size, regression analyses showed that black women had lower bone strength compared with black men (women: mean=298.7-25,522 mg HA mm4, 95% confidence interval [CI], 270-27,692 mg HA mm4; men: mean = 381.6-30,945 mg HA mm4, 95% CI, 358.2-32,853 mg HA mm4; percent difference=12%-38%, p=0.06-0.0001). Similarly, white women also had lower bone strength compared with white men (women: mean=229.5-22,892 mg HA mm4, 95% CI, 209.3-24,539 mg HA mm4; men: mean=314.3-29,986 mg HA mm4, 95% CI, 297.3-31,331 mg HA mm4; percent difference=27%-49%, p=0.0001). All long bones of women for both ethnicities showed lower cortical area compared with men. After accounting for both body size and external bone size, black women (women: mean=43.25-357.70 mm2, 95% CI, 41.45-367.52 mm2; men: mean=48.06-400.10 mm2, 95% CI, 46.67-408.72; percent difference=6%-25%, p=0.02-0.0001) and white women (women: mean=38.53-350.10 mm2, 95% CI, 36.99-359.80 mm2; men: mean=42.06-394.30 mm2, 95% CI, 40.95-402.10 mm2; percent difference=6%-22%, p=0.02-0.0001) were shown to have lower cortical area than their male counterparts. Therefore, the long bones of women are not only more slender than those of men, but also show a reduced cortical area that is 6% to 25% greater than expected for their external size, depending on the bone being considered. CONCLUSIONS: The long bones of females are not just a more slender version of male long bones. Women have less cortical area than expected for their body size and bone size, which in part explains their reduced bone strength when compared with the more robust bones of men. CLINICAL RELEVANCE: The outcome of this assessment may be clinically important for the development of diagnostics and treatment regimens used to combat fractures. Future work should look at how the relationship among parameters reported here translates to the more fracture-prone metaphyseal regions.


Assuntos
Negro ou Afro-Americano , Desenvolvimento Ósseo , Osso e Ossos/fisiologia , Disparidades nos Níveis de Saúde , População Branca , Adulto , Fenômenos Biomecânicos , Tamanho Corporal/etnologia , Densidade Óssea , Osso e Ossos/diagnóstico por imagem , Feminino , Fraturas Ósseas/etnologia , Humanos , Masculino , Fatores de Risco , Fatores Sexuais , Tomografia Computadorizada por Raios X , Adulto Jovem
7.
Clin Orthop Relat Res ; 473(8): 2530-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25690167

RESUMO

BACKGROUND: The twofold greater lifetime risk of fracturing a bone for white women compared with white men and black women has been attributed in part to differences in how the skeletal system accumulates bone mass during growth. On average, women build more slender long bones with less cortical area compared with men. Although slender bones are known to have a naturally lower cortical area compared with wider bones, it remains unclear whether the relatively lower cortical area of women is consistent with their increased slenderness or is reduced beyond that expected for the sex-specific differences in bone size and body size. Whether this sexual dimorphism is consistent with ethnic background and is recapitulated in the widely used mouse model also remains unclear. QUESTIONS/PURPOSES: We asked (1) do black women build bones with reduced cortical area compared with black men; (2) do white women build bones with reduced cortical area compared with white men; and (3) do female mice build bones with reduced cortical area compared with male mice? METHODS: Bone strength and cross-sectional morphology of adult human and mouse bone were calculated from quantitative CT images of the femoral midshaft. The data were tested for normality and regression analyses were used to test for differences in cortical area between men and women after adjusting for body size and bone size by general linear model (GLM). RESULTS: Linear regression analysis showed that the femurs of black women had 11% lower cortical area compared with those of black men after adjusting for body size and bone size (women: mean=357.7 mm2; 95% confidence interval [CI], 347.9-367.5 mm2; men: mean=400.1 mm2; 95% CI, 391.5-408.7 mm2; effect size=1.2; p<0.001, GLM). Likewise, the femurs of white women had 12% less cortical area compared with those of white men after adjusting for body size and bone size (women: mean=350.1 mm2; 95% CI, 340.4-359.8 mm2; men: mean=394.3 mm2; 95% CI, 386.5-402.1 mm2; effect size=1.3; p<0.001, GLM). In contrast, female and male femora from recombinant inbred mouse strains showed the opposite trend; femurs from female mice had a 4% larger cortical area compared with those of male mice after adjusting for body size and bone size (female: mean=0.73 mm2; 95% CI, 0.71-0.74 mm2; male: mean=0.70 mm2; 95% CI, 0.68-0.71 mm2; effect size=0.74; p=0.04, GLM). CONCLUSIONS: Female femurs are not simply a more slender version of male femurs. Women acquire substantially less mass (cortical area) for their body size and bone size compared with men. Our analysis questions whether mouse long bone is a suitable model to study human sexual dimorphism. CLINICAL RELEVANCE: Identifying differences in the way bones are constructed may be clinically important for developing sex-specific diagnostics and treatment strategies to reduce fragility fractures.


Assuntos
Tamanho Corporal , Fêmur/crescimento & desenvolvimento , Disparidades nos Níveis de Saúde , Osteogênese , Adulto , Negro ou Afro-Americano , Animais , Fenômenos Biomecânicos , Tamanho Corporal/etnologia , Feminino , Fêmur/diagnóstico por imagem , Humanos , Modelos Lineares , Masculino , Camundongos , Camundongos Endogâmicos , Modelos Animais , Caracteres Sexuais , Fatores Sexuais , Especificidade da Espécie , Tomografia Computadorizada por Raios X , População Branca , Adulto Jovem
8.
JBMR Plus ; 8(4): ziae013, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38523663

RESUMO

Hip areal BMD (aBMD) is widely used to identify individuals with increased fracture risk. Low aBMD indicates low strength, but this association differs by sex with men showing greater strength for a given aBMD than women. To better understand the structural basis giving rise to this sex-specific discrepancy, cadaveric proximal femurs from White female and male donors were imaged using nano-CT and loaded in a sideways fall configuration to assess strength. FN pseudoDXA images were generated to identify associations among structure, aBMD, and strength that differ by sex. Strength correlated significantly with pseudoDXA aBMD for females (R2 = 0.468, P < .001) and males (R2 = 0.393, P < .001), but the elevations (y-intercepts) of the linear regressions differed between sexes (P < .001). Male proximal femurs were 1045 N stronger than females for a given pseudoDXA aBMD. However, strength correlated with pseudoDXA BMC for females (R2 = 0.433, P < .001) and males (R2 = 0.443, P < .001) but without significant slope (P = .431) or elevation (P = .058) differences. Dividing pseudoDXA BMC by FN-width, total cross-sectional area, or FN-volume led to significantly different associations between strength and the size-adjusted BMC measures for women and men. Three structural differences were identified that differentially affected aBMD and strength for women and men: First, men had more bone mass per unit volume than women; second, different cross-sectional shapes resulted in larger proportions of bone mass orthogonal to the DXA image for men than women; and third, men and women had different proportions of cortical and trabecular bone relative to BMC. Thus, the proximal femurs of women were not smaller versions of men but were constructed in fundamentally different manners. Dividing BMC by a bone size measure was responsible for the sex-specific associations between hip aBMD and strength. Thus, a new approach for adjusting measures of bone mass for bone size and stature is warranted.

9.
Proc Natl Acad Sci U S A ; 107(1): 222-7, 2010 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-20018674

RESUMO

Enzyme replacement therapy is currently available for three of the mucopolysaccharidoses (MPSs) but has limited effects on the skeletal lesions. We investigated the involvement of the Toll-like receptor 4 (TLR4) signaling pathway in the pathogenesis of MPS bone and joint disease, and the use of the anti-TNF-alpha drug, Remicade (Centocor, Inc.), for treatment. TLR4 KO (TLR4(lps-/-)) mice were interbred with MPS VII mice to produce double-KO (DKO) animals. The DKO mice had longer and thinner faces and longer femora as revealed by micro-computed tomography analysis compared with MPS VII mice. Histological analyses also revealed more organized and thinner growth plates. The serum levels of TNF-alpha were normalized in the DKO animals, and the levels of phosphorylated STAT1 and STAT3 in articular chondrocytes were corrected. These findings led us to evaluate the effects of Remicade in MPS VI rats. When initiated at 1 month of age, i.v. treatment prevented the elevation of TNF-alpha, receptor activator of NF-kappaB, and other inflammatory molecules not only in the blood but in articular chondrocytes and fibroblast-like synoviocytes (FLSs). Treatment of 6-month-old animals also reduced the levels of these molecules to normal. The number of apoptotic articular chondrocytes in MPS VI rats was similarly reduced, with less infiltration of synovial tissue into the underlying bone. These studies revealed the important role of TLR4 signaling in MPS bone and joint disease and suggest that targeting TNF-alpha may have positive therapeutic effects.


Assuntos
Mucopolissacaridoses/tratamento farmacológico , Transdução de Sinais/imunologia , Receptor 4 Toll-Like/imunologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Antirreumáticos/farmacologia , Antirreumáticos/uso terapêutico , Osso e Ossos/anatomia & histologia , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Humanos , Infliximab , Masculino , Camundongos , Camundongos Knockout , Mucopolissacaridoses/imunologia , Mucopolissacaridoses/patologia , Ratos , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/imunologia , Microtomografia por Raio-X
10.
Nat Genet ; 36(11): 1133-7, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15514660

RESUMO

The goal of the Complex Trait Consortium is to promote the development of resources that can be used to understand, treat and ultimately prevent pervasive human diseases. Existing and proposed mouse resources that are optimized to study the actions of isolated genetic loci on a fixed background are less effective for studying intact polygenic networks and interactions among genes, environments, pathogens and other factors. The Collaborative Cross will provide a common reference panel specifically designed for the integrative analysis of complex systems and will change the way we approach human health and disease.


Assuntos
Cruzamento , Recursos em Saúde , Camundongos Endogâmicos , Animais , Redes Comunitárias , Cruzamentos Genéticos , Bases de Dados Genéticas , Pesquisa sobre Serviços de Saúde , Humanos , Camundongos , Recombinação Genética
11.
Bone ; 175: 116855, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37481149

RESUMO

Bone development is a highly orchestrated process that establishes the structural basis of bone strength during growth and functionality across the lifespan. This developmental process is generally robust in establishing mechanical function, being adaptable to many genetic and environmental factors. However, not all factors can be fully accommodated, leading to abnormal bone development and lower bone strength. This can give rise to early-onset bone fragility that negatively impacts bone strength across the lifespan. Current guidelines for assessing bone strength include measuring bone mineral density, but this does not capture the structural details responsible for whole bone strength in abnormally developing bones that would be needed to inform clinicians on how and when to treat to improve bone strength. The clinical consequence of not operationalizing how altered bone development informs decision making includes under-detection and missed opportunities for early intervention, as well as a false positive diagnosis of fragility with possible resultant clinical actions that may actually harm the growing skeleton. In this Perspective, we emphasize the need for a multi-trait, integrative approach to better understand the structural basis of bone growth for pediatric conditions with abnormal bone development. We provide evidence to showcase how this approach might reveal multiple, unique ways in which bone fragility develops across and within an array of pediatric conditions that are associated with abnormal bone development. This Perspective advocates for the development of new translational research aimed at informing better ways to optimize bone growth, prevent fragility fractures, and monitor and treat bone fragility based on the child's skeletal needs.


Assuntos
Doenças Ósseas , Fraturas Ósseas , Criança , Humanos , Osso e Ossos , Densidade Óssea , Desenvolvimento Ósseo
12.
JBMR Plus ; 7(3): e10715, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36936363

RESUMO

Bone mineral density (BMD) is heavily relied upon to reflect structural changes affecting hip strength and fracture risk. Strong correlations between BMD and strength are needed to provide confidence that structural changes are reflected in BMD and, in turn, strength. This study investigated how variation in bone structure gives rise to variation in BMD and strength and tested whether these associations differ with external bone size. Cadaveric proximal femurs (n = 30, White women, 36-89+ years) were imaged using nanocomputed tomography (nano-CT) and loaded in a sideways fall configuration to assess bone strength and brittleness. Bone voxels within the nano-CT images were projected onto a plane to create pseudo dual-energy X-ray absorptiometry (pseudo-DXA) images consistent with a clinical DXA scan. A validation study using 19 samples confirmed pseudo-DXA measures correlated significantly with those measured from a commercially available DXA system, including bone mineral content (BMC) (R 2  = 0.95), area (R 2  = 0.58), and BMD (R 2  = 0.92). BMD-strength associations were conducted using multivariate linear regression analyses with the samples divided into narrow and wide groups by pseudo-DXA area. Nearly 80% of the variation in strength was explained by age, body weight, and pseudo-DXA BMD for the narrow subgroup. Including additional structural or density distribution information in regression models only modestly improved the correlations. In contrast, age, body weight, and pseudo-DXA BMD explained only half of the variation in strength for the wide subgroup. Including bone density distribution or structural details did not improve the correlations, but including post-yield deflection (PYD), a measure of bone material brittleness, did increase the coefficient of determination to more than 70% for the wide subgroup. This outcome suggested material level effects play an important role in the strength of wide femoral necks. Thus, the associations among structure, BMD, and strength differed with external bone size, providing evidence that structure-function relationships may be improved by judiciously sorting study cohorts into subgroups. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

13.
Muscle Nerve ; 46(6): 899-907, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23019020

RESUMO

INTRODUCTION: Stretch injuries in peripheral nerves can cause pain, paralysis, and loss of sensation. Although optimal treatment depends on the degree of injury, it is difficult to determine the severity of induced nerve damage. METHODS: The load-deformation curves of rat median nerves were generated from monotonic load-to-failure experiments to determine low, medium, and high strain levels. Additional excised median nerves were then elongated to induce damage at low (4%), medium (10% and 12%), and high (14% and 20%) tensile strains and the resulting structural damage was evaluated using second harmonic generation (SHG) imaging and light microscopy. RESULTS: No substantial structural changes occurred at 4% strain, but higher strain values resulted in disruption of the normal collagen architecture. CONCLUSIONS: The results demonstrate a spectrum of structural damage that can be monitored using SHG, a non-destructive imaging modality, and that the pattern of damage may correspond to functional deficit.


Assuntos
Neuropatia Mediana/etiologia , Neuropatia Mediana/patologia , Microscopia , Estresse Mecânico , Animais , Fenômenos Biomecânicos , Modelos Animais de Doenças , Feminino , Ratos , Ratos Sprague-Dawley , Índice de Gravidade de Doença
14.
Disabil Health J ; 15(3): 101315, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35370108

RESUMO

BACKGROUND: Fractures represent a triple threat to adults with cerebral palsy (CP): common, accumulate early in adulthood, and are consequential to health. An economic evaluation of fractures in CP is needed to highlight priorities for allocating resources to clinical and public health programs aimed at preventing fractures and their disease sequela. OBJECTIVE: To identify short-term healthcare costs associated with fractures among adults with CP. METHODS: A retrospective cohort study was performed using Optum's de-identified Clinformatics® Data Mart Database from 01/01/2011-12/31/2017. The primary cohort included adults ≥ 18 years old with CP with an incident fracture (CP+Fx), and cost estimates were compared with: CP without fractures (CPw/oFx) and without CP+Fx (w/oCP+Fx). A difference-in-difference (DiD) analysis compared the change in pharmacy and medical costs between cohorts from the one-year baseline period through the one-year post-index period in three-month quarters. RESULTS: CP+Fx (n = 855) had higher mean costs in the baseline and follow-up periods compared with CPw/oFx (n = 5667) and w/oCP+Fx (n = 588,042). The first post-index quarter DiD estimate suggests that CP+Fx accumulated an excess $6462 (95%CI = $3810-$9021) compared with w/oCP+Fx and $17,197 (95%CI = $14,418-$19,833) compared with CPw/oFx. The CP+Fx cohort had higher DiD estimates in the other follow-up quarters, but they were not statistically significant compared with CPw/oFx. When stratified by fracture site, vertebral column fractures for CP+Fx vs. w/oCP+Fx accumulated an excess $25,226 (95%CI = $12,639-$37,417). CONCLUSIONS: Fractures, especially of the vertebral column, were associated with high healthcare costs among adults with CP. Studies are needed to identify cost-effective opportunities to utilize available resources to prevent fractures and their costly sequela for CP.


Assuntos
Paralisia Cerebral , Pessoas com Deficiência , Fraturas Ósseas , Adolescente , Adulto , Paralisia Cerebral/complicações , Fraturas Ósseas/complicações , Custos de Cuidados de Saúde , Humanos , Estudos Retrospectivos
15.
Bone ; 163: 116481, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35817317

RESUMO

Bone strength is generally thought to decline with aging and prior work has compared traits between younger and older cohorts to identify the structural and compositional changes that contribute to fracture risk with age. However, for men, the majority of individuals do not fracture a bone in their lifetime. While fracture occurrence is multifactorial, the absence of fracture in the majority of males suggests that some individuals maintain bone strength or do not lose enough strength to fracture, whereas others do lose strength with aging. Consequently, not all structural and material changes observed with age may lead to strength-decline. We propose that consideration of different subgroups of older individuals will provide a more precise understanding of which structural and material changes directly contribute to strength-decline. We identified subgroups using latent profile analysis (LPA), which is a clustering-based algorithm that takes multiple continuous variables into account. Human cadaveric male femoral diaphyses (n = 33, 26-89 years) were subjected to whole bone and tissue-level mechanical tests. Morphological traits, porosity, and cortical tissue mineral density (Ct.TMD) were obtained, as were measures of enzymatic cross-links and the advanced glycation end product, pentosidine (PEN). A univariate analysis first identified a younger cohort (YNG, n = 11) and older cohort (n = 22). LPA was then conducted using three mechanical traits (whole bone strength, tissue-level strength, and tissue-level post-yield strain), resulting in a further stratification of the older group into two similarly aged groups (p = 0.558), but one with higher (OHM, n = 16) and another with lower mechanical properties (OLM, n = 6). The OLM group exhibited lower whole bone strength (p = 0.016), tissue-level strength (p < 0.001), and tissue-level post-yield strain (p < 0.001) compared to the YNG group. Meanwhile, the OHM only exhibited significantly lower tissue-level post-yield strain (p < 0.001), compared to the YNG group. Between the two older groups, the OHM group exhibited higher whole bone strength (p = 0.037), tissue-level strength (p = 0.006), and tissue-level post-yield strain (p = 0.012) than the OLM group. Probing the morphological and compositional relationships among the three groups, both OHM and OLM exhibited increased PEN content (p < 0.001, p = 0.008 respectively) and increased Log(cortical pore score) relative to YNG (p = 0.003, p < 0.001 respectively). Compared to the OHM group, the OLM also exhibited increased marrow area (p = 0.049), water content (p = 0.048), and decreased Ct.TMD (p = 0.005). The key traits that were unique to the OLM group compared to YNG were decreased Ct.TMD (p < 0.001) and increased Log(porosity) (p = 0.002). There were many properties that differed between the younger and older groups, but not all were associated with reduced mechanical properties, highlighting the relative importance of certain age-related traits such as porosity, Ct.TMD, water content, and marrow area that were unique to the OLM group. Overall, this work supports the hypothesis that there are subgroups of men showing different strength-decline trajectories with aging and establishes a basis for refining our understanding of which age-related changes are directly contributing to decreased strength.


Assuntos
Densidade Óssea , Fraturas Ósseas , Idoso , Fenômenos Biomecânicos , Osso e Ossos , Fêmur , Humanos , Masculino , Água
16.
J Biomech ; 139: 111144, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35623287

RESUMO

Region-specific differences in age-related bone remodeling are known to exist. We therefore hypothesized that the decline in tissue-level strength and post-yield strain (PYS) with age is not uniform within the femur, but is driven by region-specific differences in porosity and composition. Four-point bending was conducted on anterior, posterior, medial, and lateral beams from male cadaveric femora (n = 33, 18-89 yrs of age). Mid-cortical porosity, composition, and mineralization were assessed using nano-computed tomography (nanoCT), Raman spectroscopy, and ashing assays. Traits between bones from young and elderly groups were compared, while multivariate analyses were used to identify traits that predicted strength and PYS at the regional level. We show that age-related decline in porosity and mechanical properties varied regionally, with highest positive slope of age vs. Log(porosity) found in posterior and anterior bone, and steepest negative slopes of age vs. strength and age vs. PYS found in anterior bone. Multivariate analyses show that Log(porosity) and/or Raman 1246/1269 ratio explained 46-51% of the variance in strength in anterior and posterior bone. Three out of five traits related to Log(porosity), mineral crystallinity, 1246/1269, mineral/matrix ratio, and/or hydroxyproline/proline (Hyp/Pro) ratio, explained 35-50% of the variance in PYS in anterior, posterior and lateral bones. Log(porosity) and Hyp/Pro ratio alone explained 13% and 19% of the variance in strength and PYS in medial bone, respectively. The predictive performance of multivariate analyses was negatively impacted by pooling data across all bone regions, underscoring the complexity of the femur and that the use of pooled analyses may obscure underlying region-specific differences.


Assuntos
Osso e Ossos , Fêmur , Idoso , Densidade Óssea , Remodelação Óssea , Fêmur/diagnóstico por imagem , Humanos , Masculino , Minerais , Porosidade
17.
J Biomed Mater Res A ; 110(3): 696-707, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34672417

RESUMO

Endosseous implant surface topography directly affects adherent cell responses following implantation. The aim of this study was to examine the impact of nanoscale topographic modification of titanium implants on Osterix gene expression since this gene has been reported as key factor for bone formation. Titanium implants with smooth and nanoscale topographies were implanted in the femurs of Osterix-Cherry mice for 1-21 days. Implant integration was evaluated using scanning electron microscopy (SEM) to evaluate cell adhesion on implant surfaces, histology, and nanotomography (NanoCT) to observe and quantify the formed bone-to-implant interface, flow cytometry to quantify of Osterix expressing cells in adjacent tissues, and real-time PCR (qPCR) to quantify the osteoinductive and osteogenic gene expression of the implant-adherent cells. SEM revealed topography-dependent adhesion of cells at early timepoints. NanoCT demonstrated greater bone formation at nanoscale implants and interfacial osteogenesis was confirmed histologically at 7 and 14 days for both smooth and nanosurface implants. Flow cytometry revealed greater numbers of Osterix positive cells in femurs implanted with nanoscale versus smooth implants. Compared to smooth surface implants, nanoscale surface adherent cells expressed higher levels of Osterix (Osx), Alkaline phosphatase (Alp), Paired related homeobox (Prx1), Dentin matrix protein 1 (Dmp1), Bone sialoprotein (Bsp), and Osteocalcin (Ocn). In conclusion, nanoscale surface implants demonstrated greater bone formation associated with higher levels of Osterix expression over the 21-day healing period with direct evidence of surface-associated gene regulation involving a nanoscale-mediated osteoinductive pathway that utilizes Osterix to direct adherent cell osteoinduction.


Assuntos
Implantes Dentários , Osseointegração , Animais , Camundongos , Osteogênese , Próteses e Implantes , Propriedades de Superfície , Titânio/farmacologia
18.
J Orthop Res ; 40(4): 826-837, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34191360

RESUMO

Despite poor graft integration among some patients that undergo an anterior cruciate ligament (ACL) reconstruction, there has been little consideration of the bone quality into which the ACL femoral tunnel is drilled and the graft is placed. Bone mineral density of the knee decreases following ACL injury. However, trabecular and cortical architecture differences between injured and non-injured femoral ACL entheses have not been reported. We hypothesize that injured femoral ACL entheses will show significantly less cortical and trabecular mass compared with non-injured controls. Femoral ACL enthesis explants from 54 female patients (13-25 years) were collected during ACL reconstructive surgery. Control explants (n = 12) were collected from seven donors (18-36 years). Injured (I) femoral explants differed from those of non-injured (NI) controls with significantly less (p ≤ 0.001) cortical volumetric bone mineral density (vBMD) (NI: 736.1-867.6 mg/cm3 ; I: 451.2-891.9 mg/cm3 ), relative bone volume (BV/TV) (NI: 0.674-0.867; I: 0.401-0.792) and porosity (Ct.Po) (NI: 0.133-0.326; I: 0.209-0.600). Injured explants showed significantly less trabecular vBMD (p = 0.013) but not trabecular BV/TV (p = 0.314), thickness (p = 0.412), or separation (p = 0.828). We found significantly less cortical bone within injured femoral entheses compared to NI controls. Lower cortical and trabecular bone mass within patient femoral ACL entheses may help explain poor ACL graft osseointegration outcomes in the young and may be a contributor to the osteolytic phenomenon that often occurs within the graft tunnel following ACL reconstruction.


Assuntos
Lesões do Ligamento Cruzado Anterior , Reconstrução do Ligamento Cruzado Anterior , Ligamento Cruzado Anterior/cirurgia , Lesões do Ligamento Cruzado Anterior/cirurgia , Feminino , Fêmur/cirurgia , Humanos , Articulação do Joelho/cirurgia , Masculino
19.
JBMR Plus ; 6(8): e10653, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35991534

RESUMO

Morphological parameters measured for the second metacarpal from hand radiographs are used clinically for assessing bone health during growth and aging. Understanding how these morphological parameters relate to metacarpal strength and strength at other anatomical sites is critical for providing informed decision-making regarding treatment strategies and effectiveness. The goals of this study were to evaluate the extent to which 11 morphological parameters, nine of which were measured from hand radiographs, relate to experimentally measured whole-bone strength assessed at multiple anatomical sites and to test whether these associations differed between men and women. Bone morphology and strength were assessed for the second and third metacarpals, radial diaphysis, femoral diaphysis, and proximal femur for 28 white male donors (18-89 years old) and 35 white female donors (36-89+ years old). The only morphological parameter to show a significant correlation with strength without a sex-specific effect was cortical area. Dimensionless morphological parameters derived from hand radiographs correlated significantly with strength for females, but few did for males. Males and females showed a significant association between the circularity of the metacarpal cross-section and the outer width measured in the mediolateral direction. This cross-sectional shape variation contributed to systematic bias in estimating strength using cortical area and assuming a circular cross-section. This was confirmed by the observation that use of elliptical formulas reduced the systematic bias associated with using circular approximations for morphology. Thus, cortical area was the best predictor of strength without a sex-specific difference in the correlation but was not without limitations owing to out-of-plane shape variations. The dependence of cross-sectional shape on the outer bone width measured from a hand radiograph may provide a way to further improve bone health assessments and informed decision making for optimizing strength-building and fracture-prevention treatment strategies. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

20.
Clin Orthop Relat Res ; 469(8): 2150-9, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21125361

RESUMO

BACKGROUND: Advances in diagnostic and treatment regimens that aim to reduce fracture incidence will benefit from a better understanding of how bone morphology and tissue quality define whole-bone mechanical properties. QUESTIONS/PURPOSES: The goal of this article was to review what is known about the interactions among morphologic and tissue quality traits and how these interactions contribute to bone quality (ie, whole-bone mechanical function). Several questions were addressed. First, how do interactions among morphology and tissue quality traits relate to functional adaptation? Second, what are the emergent patterns of functionally adapted trait sets in long bones? Third, how effective is phenotypic integration at establishing function across a population? Fourth, what are the emergent patterns of functionally adapted trait sets in corticocancellous structures? Fifth, how do functional interactions change with aging? METHODS: A literature review was conducted with papers identified primarily through citations listed in reference sections as well as general searches using Google Scholar and PubMed. RESULTS: The interactions among adult traits or phenotypic integration are an emergent property of the compensatory mechanisms complex systems used to establish function or homeostasis. Traits are not regulated independently but vary simultaneously (ie, covary) in specific ways to establish function. This covariation results in individuals acquiring unique sets of traits to establish bone quality. CONCLUSIONS AND CLINICAL RELEVANCE: Biologic constraints imposed on the skeletal system result in a population showing a pattern of trait sets that is predictable based on external bone size and that can be used to identify individuals with reduced bone quality relative to their bone size and body size.


Assuntos
Osso e Ossos/anatomia & histologia , Osso e Ossos/fisiologia , Suporte de Carga/fisiologia , Adaptação Fisiológica , Peso Corporal/fisiologia , Densidade Óssea/fisiologia , Fraturas Ósseas/fisiopatologia , Humanos , Osteoblastos/fisiologia , Osteoclastos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA