Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Crit Rev Immunol ; 44(5): 87-98, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38618731

RESUMO

Despite advancements in the field of cancer therapeutics, the five-year survival rate remains low in oral cancer patients. Therefore, the effective therapeutics are needed against oral cancer. Also, several studies including ours, have shown severely suppressed function and number of NK cells in oral cancer patients. In this review, we discuss the approach to inhibit the tumor growth and metastasis by direct killing or NK cell-mediated tumor differentiation. This review also provides an overview on supercharging NK cells using osteoclasts and probiotic bacteria, and their efficacy as cancer immunotherapeutic in humanized-BLT mice.


Assuntos
Neoplasias Bucais , Humanos , Animais , Camundongos , Neoplasias Bucais/terapia , Imunoterapia , Diferenciação Celular , Células Matadoras Naturais , Ativação Linfocitária
2.
Crit Rev Immunol ; 44(2): 61-75, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38305337

RESUMO

This study is focused on assessing the activation in NK, CD3+ T, and γδ T cells when they interact with osteoclasts (OCs) and monocytes in the presence or absence of zoledronate (ZOL), both in humans and WT mice. OCs resulted in increased IFN-γ secretion in NK, CD3+ T, and γδ T cells, however, the significantly highest increase was seen when cells were co-cultured with ZOL-treated OCs. Our previous studies have demonstrated increased IFN-γ secretion in the peripheral blood-derived immune cells of bisphosphonate-related osteonecrosis of the jaw (BRONJ) mice model. This could be due to increased OCs-induced activation of immune cells with ZOL treatment. We also observed increased IFN-γ secretion in humanized-BLT (hu-BLT) mice NK cells when were co-cultured with OCs or monocytes, and higher IFN-γ secretion levels were seen in the presence of OCs or ZOL-treated OCs. In addition, similar effects on IFN-γ secretion levels of NK, CD3+ T, and γδ T cells were seen whether cells were co-cultured with allogeneic OCs or autologous OCs.


Assuntos
Osteoclastos , Receptores de Antígenos de Linfócitos T gama-delta , Humanos , Camundongos , Animais , Ácido Zoledrônico/farmacologia , Monócitos , Linfócitos T
3.
Crit Rev Immunol ; 44(5): 71-85, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38618730

RESUMO

Natural killer (NK) cells are innate lymphoid cells that exhibit high levels of cytotoxicity against NK-specific targets. NK cells also produce various cytokines, and interact with T cells, B cells, and dendritic cells to effectively serve as frontliners of the innate immune system. Produce various cytokines, and interact with T cells, B cells, and dendritic cells to effectively serve as frontliners of the innate immune system. Moreover, NK cells constitute the second most common immune cell in the liver. These properties have drawn significant attention towards leveraging NK cells in treating liver cancer, especially hepatocellular carcinoma (HCC), which accounts for 75% of all primary liver cancer and is the fourth leading cause of cancer-related death worldwide. Notable anti-cancer functions of NK cells against HCC include activating antibody-dependent cell cytotoxicity (ADCC), facilitating Gasdermin E-mediated pyroptosis of HCC cells, and initiating an antitumor response via the cGAS-STING signaling pathway. In this review, we describe how these mechanisms work in the context of HCC. We will then discuss the existing preclinical and clinical studies that leverage NK cell activity to create single and combined immunotherapies.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/terapia , Imunidade Inata , Neoplasias Hepáticas/terapia , Células Matadoras Naturais , Citocinas , Imunoterapia
4.
Crit Rev Immunol ; 43(2): 13-25, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37938193

RESUMO

In this paper, we review a number of in vitro and in vivo studies regarding the efficacy of supercharged NK (sNK) cell therapy in elimination or treatment of cancer. We have performed studies using six different types of cancer models of oral, pancreatic, glioblastoma, melanoma, hepatic and ovarian cancers using hu-BLT mice. Our in vitro studies demonstrated that primary NK cells preferentially target cancer stem-like cells (CSCs)/poorly differentiated tumors whereas sNK cells target both CSCs/poorly-differentiated and well-differentiated tumors significantly higher than primary activated NK cells. Our in vivo studies in humanized-BLT mice showed that sNK cells alone or in combination with other cancer therapeutics prevented tumor growth and metastasis. In addition, sNK cells were able to increase IFN-γ secretion and cytotoxic function by the immune cells in bone marrow, spleen, gingiva, pancreas and peripheral blood. Furthermore, sNK cells were able to increase the expansion and function of CD8+ T cells both in in vitro and in vivo studies. Overall, our studies demonstrated that sNK cells alone or in combination with other cancer therapeutics were not only effective against eliminating aggressive cancers, but were also able to increase the expansion and function of CD8+ T cells to further target cancer cells, providing a successful approach to eradicate and cure cancer.


Assuntos
Glioblastoma , Melanoma , Neoplasias Ovarianas , Animais , Feminino , Camundongos , Medula Óssea , Modelos Animais de Doenças , Células Matadoras Naturais , Fígado , Neoplasias Ovarianas/terapia , Pâncreas
5.
Crit Rev Immunol ; 43(1): 13-26, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37522558

RESUMO

Our recent studies indicated that amyotrophic lateral sclerosis (ALS) patients suffer from significantly elevated levels of interferon-gamma (IFN-γ) secretion by natural killer (NK) and CD8+ T cells, which may be responsible for the immune-pathologies seen in central nervous system and in peripheral organs of the patients. In order to counter such elevated induction of IFN-γ in patients we designed a treatment strategy to increase anti-inflammatory cytokine interleukin-10 (IL-10) by the use of probiotic strains which significantly increase the levels of IL-10. Therefore, in this paper we demonstrate disease specific functions of Al-Pro (AJ3) formulated for the adjunct treatment of auto-immune diseases including ALS, and compared the function with CA/I-Pro (AJ4) for the treatment of cancer and viral diseases, and NK-CLK (AJ2) for maintenance of immune balance and promotion of disease prevention. The three different formulations of probiotic bacteria have distinct profiles of activation of peripheral blood mononuclear cells (PBMCs), NK, and CD8+ T cells, and their induced activation is different from those mediated by either IL-2 or IL-2 + anti-CD16 monoclonal antibodies (mAbs) or IL-2 + anti-CD3/CD28 mAbs. IL-2 + anti-CD16 mAb activation of PBMCs and NK cells had the highest IFN-γ/IL-10 ratio, whereas IL-2 combination with sAJ4 had the next highest followed by IL-2 + sAJ2 and the lowest was seen with IL-2 + sAJ3. Accordingly, the highest secretion of IFN-γ was seen when the PBMCs and NK cells were treated with IL-2 + sAJ4, intermediate for IL-2 + sAJ2 and the lowest with IL-2 + sAJ3. The levels of IFN-γ induction and the ratio of IFN-γ to IL-10 induced by different probiotic bacteria formulation in the absence of IL-2 treatment remained much lower when compared to those treated in the presence of IL-2. Of note is the difference between NK cells and CD8+ T cells in which synergistic induction of IFN-y by IL-2 + sAJ4 was significantly higher in NK cells than those seen by CD8+ T cells. Based on these results, sAJ3 should be effective in alleviating auto-immunity seen in ALS since it will greatly regulate the levels and function of IFN-γ negatively, decreasing overactivation of cytotoxic immune effectors and prevention of death in motor neurons.


Assuntos
Esclerose Lateral Amiotrófica , Antineoplásicos , Humanos , Interleucina-10/farmacologia , Esclerose Lateral Amiotrófica/terapia , Leucócitos Mononucleares , Interleucina-2 , Citocinas , Interferon gama , Antineoplásicos/farmacologia , Anticorpos Monoclonais
6.
Crit Rev Immunol ; 43(1): 27-39, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37522559

RESUMO

Amyotrophic lateral sclerosis (ALS) is an auto-immune neurodegenerative disorder affecting the motor-neurons. The causes of ALS are heterogeneous, and are only partially understood to date. We studied percentage and function of immune cell subsets in particular natural killer (NK) and CD8+ T cells in an ALS patient and compared the results to those obtained from his genetically identical healthy twin in a longitudinal study. We found several basic mechanisms which were potentially involved in the disease induction and progression. Our findings demonstrate that ALS patient's peripheral blood contained higher NK and B cells and, lower T cell percentages compared with the healthy twin brother's peripheral blood. Significantly increased interferon-gamma secretion by anti-CD3/28 monoclonal antibody-treated peripheral blood mononuclear cells, and sorted CD8+ T cells were observed in the ALS patient, suggesting that hyper-responsiveness of T cell compartment could be a potential mechanism of ALS progression. Significant increase in NK cell function due to genetic mutations in ALS associated genes may partly be responsible for the increase expansion and function of CD8+ T cells with effector/memory phenotype, in addition to direct activation and expansion of antigen specific T cells by such mutations. Weekly N-acetyl cysteine infusion to block cell death in patient in addition to a number of other therapies listed in this paper were not effective, and even though the treatments might have extended the patient's life, it was not curative. Therefore, activated CD8+ T and NK cells are likely cells targeting motor neurons in the patient, and strategies should be designed to decrease the aggressive nature of these cells to achieve longer lasting therapeutic benefits.

7.
Crit Rev Immunol ; 43(1): 1-11, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37522557

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurological disease characterized by the progressive loss of motor neurons in the brain and spinal cord. No effective therapeutic strategies have been established thus far, and therefore there is a significant unmet need for effective therapeutics to arrest the disease and reverse the pathologies induced by it. Although the cause of ALS is not well-defined, it appears to be heterogenous. Currently over 20 genes have been found to be associated with ALS. Family history can only be found in 10% of ALS patients, but in the remaining 90% no association with family history is found. The most common genetic causes are expansion in the C9orf72 gene and mutations in superoxide dismutase 1, TDP-43, and FUS. In our recent study, we also found mutations in TDP43 and FUS in ALS patients. To understand the pathogenesis of the disease, we set ourselves the task of analyzing the phenotype and function of all key immune effectors in ALS patients, comparing them with either a genetically healthy twin or healthy individuals. Our study demonstrated a significant increase in functional activation of NK and CD8+ T cytotoxic immune effectors and release of significant IFN-γ not only by the effector cells but also in the serum of ALS patients. Longitudinal analysis of CD8+ T cell-mediated IFN-γ secretion from ALS patients demonstrated continued and sustained increase in IFN-γ secretion with periods of decrease which coincided with certain treatments; however, the effects were largely short-lived. N-acetyl cysteine (NAC), one of the treatments used, is known to block cell death; however, even though such treatment was able to block most of the proinflammatory cytokines, chemokines, and growth factor release, it was not able to block IFN-γ and TNF-α, the two cytokines we had demonstrated previously to induce differentiation of the cells. In this review, we discuss the contribution of cytotoxic effector cells, especially primary NK cells, supercharged NK cells (sNK), and the contribution of sNK cells in expansion and functional activation of CD8+ T cells to memory/effector T cells in the pathogenesis of ALS. Potential new targeted therapeutic strategies are also discussed.


Assuntos
Esclerose Lateral Amiotrófica , Humanos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/terapia , Esclerose Lateral Amiotrófica/metabolismo , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Superóxido Dismutase-1/farmacologia , Citocinas/metabolismo
8.
Cell Mol Life Sci ; 81(1): 8, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38092995

RESUMO

Cystatin F, a cysteine peptidase inhibitor, is a potent modulator of NK cytotoxicity. By inhibiting granule-mediated cytotoxicity pathway, cystatin F induces formation of non-functional NK cell stage, called split-anergy. We show that N-glycosylation determines the localization and cellular function of cystatin F. Cystatin F mostly exhibited high-mannose glycosylation in U-937 cells, both high-mannose and complex glycosylation in NK-92 and primary NKs, and predominantly complex glycosylation in super-charged NKs. Manipulating N-glycosylation with kifunensine increased high-mannose glycosylation of cystatin F and lysosome localisation, which decreased cathepsin C activity and reduced NK cytotoxicity. Mannose-6-phosphate could significantly reduce the internalization of extracellular cystatin F. By comparing NK cells with different cytotoxic potentials, we found that high-mannose cystatin F was strongly associated with lysosomes and cathepsin C in NK-92 cell line. In contrast, in highly cytotoxic super-charged NKs, cystatin F with complex glycosylation was associated with the secretory pathway and less prone to inhibit cathepsin C. Modulating glycosylation to alter cystatin F localisation could increase the cytotoxicity of NK cells, thereby enhancing their therapeutic potential for treating cancer patients.


Assuntos
Antineoplásicos , Cistatinas , Humanos , Glicosilação , Manose , Catepsina C/metabolismo , Células Matadoras Naturais/metabolismo
9.
Crit Rev Immunol ; 42(3): 23-36, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37017624

RESUMO

Programmed cell death-1 (PD-1) immunoinhibitory receptor expression is found on T cells, B cells, natural killer (NK) cells, and myeloid cells. Upon activation of T cells through peptide-major histocompatibility complex (MHC) engagement of the T cell receptor and costimulatory signaling, checkpoints including PD-1 are activated to regulate T cells. Since decreased expression of PD-1 in mice model was found to be associated with breakdown of peripheral tolerance, and demonstrated autoimmune disease characteristic, this receptor may be important therapeutic target for autoimmunity. In addition, decreased NK cell numbers and cytotoxicity in peripheral blood and altered expression of activating receptors and cytokine secretion of NK cells was seen in autoimmune disease patients. Therefore, in this review we discuss the relevance of PD-1 function in NK and T cells in autoimmunity, and demonstrate similarities and differences of its function in autoimmune diseases and cancer. Thus, PD-1 can be targeted to treat each disease entity accordingly. In cancer, the function of PD-1 can be blocked in order to enhance immune activation, whereas in autoimmune diseases it can be enhanced to block heightened immune function. However, we are far from understanding the exact functioning of this receptor in a complex tissue microenvironment, and further studies are required to establish its function at different stages of the disease, and at different stages of the maturation of immune effectors.


Assuntos
Doenças Autoimunes , Neoplasias , Animais , Camundongos , Humanos , Receptor de Morte Celular Programada 1/metabolismo , Linfócitos T , Células Matadoras Naturais , Doenças Autoimunes/metabolismo , Microambiente Tumoral
10.
Cancer Immunol Immunother ; 71(5): 1033-1047, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34559307

RESUMO

The majority of the previous reports on NK cells use cross-sectional studies to establish the status of patient NK cell function, however such studies fail to evaluate the immune status of the patients on a continuous basis from the disease-free stage to progression of cancer. In this study, we performed a prospective study of the immune function by continuously monitoring the NK numbers, expansion and function of a pancreatic cancer patient from 1/6/2016 to 2/14/2019. The results indicated that at initial stages of the disease where no overt disease was identified, the patient had consistently higher percentages of NK and B cells and lower percentages of CD3 + T cells in the peripheral blood. The percentages of CD14 + monocytes were similar at the initial stages of the disease, and at the later stages of the disease, it increased and remained higher in the patient when compared to those from healthy donors. The numbers of expanded NK cells and the cytotoxic function, as well as secretion of IFN-γ from primary and osteoclast expanded patient NK cells remained consistently low throughout the years of follow up. Similarly, the majority of cytokines in patient's serum remained lower with the exception of IL-6 which was higher. The IFN-γ secreted from the patients' NK cells had much lower ability to differentiate the poorly differentiated oral tumors as assessed by their lack of ability to upregulate differentiation antigens. Overall, before any evidence of overt disease, patient NK cells exhibited significant dysfunction. Intervention at the stage of no disease or minimal disease may be important for the prevention of pancreatic cancer progression.


Assuntos
Células Matadoras Naturais , Neoplasias Pancreáticas , Estudos Transversais , Citotoxicidade Imunológica , Humanos , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/patologia , Estudos Prospectivos , Neoplasias Pancreáticas
11.
Cancer Immunol Immunother ; 71(12): 2929-2941, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35507102

RESUMO

We extended our previous observations with other tumor models to study seven ovarian tumor cell lines-OVCAR3, OVCAR4, OVCAR8, SKOV3, Kuramochi, OAW28, and CaOV3. We found that NK cells targeted and killed poorly differentiated OVCAR8 and CAOV3; these two tumor lines express lower MHC-class I and higher CD44 surface receptors. OVCAR3 and OVCAR4 were more resistant to NK cell-mediated cytotoxicity, and SKOV3, Kuramochi and OAW28 had intermediate sensitivity to NK cell-mediated cytotoxicity, likely representing well-differentiated and moderately differentiated ovarian tumor cell lines, respectively. Similar trends were observed for secretion of IFN-γ by the NK cells when co-cultured with different ovarian tumor cell lines. Treatment with both IFN-γ and TNF-α upregulated MHC-class I in all ovarian tumor cell lines and resulted in tumor resistance to NK cell-mediated cytotoxicity and decreased secretion of IFN-γ in co-cultures of NK cells with tumors cells with the exception of OVCAR8 and CAOV3 which did not upregulate MHC-class I and remained sensitive to NK cell-mediated cytotoxicity and increased secretion of IFN-γ when co-cultured with NK cells. Similarly, treatment with NK cell supernatants induced resistance to NK cell-mediated cytotoxicity in OVCAR4 but not in OVCAR8, and the resistance to killing was correlated with the increased surface expression of MHC-class I in OVCAR4 but not in OVCAR8. In addition, OVCAR4 was found to be carboplatin sensitive before and after treatment with IFN-γ and NK cell supernatants, whereas OVCAR8 remained carboplatin resistant with and without treatment with IFN-γ and NK cell supernatants. Overall, sensitivity to NK cell-mediated killing correlated with the levels of tumor differentiation and aggressiveness, and more importantly, poorly differentiated ovarian tumors were unable to upregulate MHC-class I under the activating conditions for MHC-class I, a feature that was not seen in other tumor models and may likely be specific to ovarian tumors. Such tumors may also pose a significant challenge in elimination by the T cells; however, NK cells are capable of targeting such tumors and can be exploited to eliminate these tumors in immunotherapeutic strategies.


Assuntos
Neoplasias Ovarianas , Fator de Necrose Tumoral alfa , Humanos , Feminino , Fator de Necrose Tumoral alfa/metabolismo , Apoptose , Carboplatina , Antígenos de Histocompatibilidade Classe I/metabolismo , Neoplasias Ovarianas/metabolismo , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Células Matadoras Naturais
12.
Cell Immunol ; 375: 104526, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35500335

RESUMO

We have previously shown that natural killer (NK) cells expand, and increase their function after interaction with cells that exhibit a number of different knock-down genes. We hypothesized that deletion or knockdown of a variety of key genes such as RAG may cause de-differentiation of the cells which could lead to increased NK expansion and function since we have shown previously that NK cells are activated and expanded by less differentiated cells. When comparing the function of NK cells from bone marrow (BM), spleen, pancreas, adipose tissue, and gingiva from WT mice to those from Rag2-/- mice, we observed a significant increase in IFN-γ secretion in all tissues of Rag2-/- mice versus in WT mice, with the exception of the gingivae in which similar levels were observed. After injecting WT mice with zoledronic acid (ZOL) and tooth extraction, immune cells from BM, spleen, and purified NK cells from spleen exhibited very high induction of IFN-γ and NK cell-mediated cytotoxicity with the exception of gingiva in which immune cells exhibited the opposite. In Rag2-/- mice, ZOL injection and tooth extraction stimulated IFN-γ secretion from BM immune cells but inhibited IFN-γ secretion from both spleen and gingivae. In both WT and Rag2-/- mice, immune cells from gingivae exhibited decreased IFN-γ secretion when activated, indicating significant regulation of immune cell function in the gingival microenvironment. However, even though significantly lower induction of IFN-γ was observed in both WT and Rag2-/- gingival cells after ZOL injection, ZOL mediated secretion of IFN-γ was still higher in the gingivae of WT mice when compared to those of Rag2-/- gingival cells. These results suggest an important role for IFN-γ in the pathogenesis of osteonecrosis lesions observed in post-tooth extraction jawbone.


Assuntos
Medula Óssea , Gengiva , Animais , Proteínas de Ligação a DNA/genética , Células Matadoras Naturais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ácido Zoledrônico
13.
Crit Rev Immunol ; 41(2): 77-99, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34348003

RESUMO

Natural killer (NK) cells represent critical effectors of anti-tumor immune responses due to their ability to target tumor cells that escape recognition by the adaptive arm of the immune system. NK cell efficacy depends on multiple factors, including their propensity to infiltrate tumors, to reach activation threshold, and to differentiate into mature cytotoxic cells. The tumor microenvironment counteracts protective immunity by delivering anti-inflammatory signals, which stimulate the development of myeloid-derived suppressor cells (MDSC). MDSCs utilize numerous proximity-dependent and independent mechanisms to suppress functions of cytotoxic T lymphocytes and NK cells. Importantly, substantial part of their suppressive activity depends on peptidases. MDSC-derived peptidases incapacitate NK cells by shedding ligands for their activating receptors and by processing key cytokines involved in regulation of immune responses. Moreover, they are needed for sustaining the immunosuppressive loop through promotion of MDSC accumulation, expansion, and enhancement of their survival. Peptidases are at the forefront of cancer progression. However, their disparate roles in immune cells have only recently become appreciated in orchestration of the cancer immune responses. Studies that focused on elucidating the potential of peptidase inhibitors in regulation of the anti-tumor immune responses have led to renewed interest in clinical development of peptidase inhibitors. In parallel, they inspired the development of novel theranostics, that exploit increased activity of peptidases in infiltrating immune cells for targeted drug release or activation of imaging probes.


Assuntos
Células Supressoras Mieloides , Neoplasias , Humanos , Células Matadoras Naturais , Neoplasias/terapia , Peptídeo Hidrolases , Microambiente Tumoral
14.
Crit Rev Immunol ; 41(2): 1-19, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34347999

RESUMO

Elucidating the role of probiotic bacteria in health and disease perhaps constitutes one of the most exciting and fastest growing fields in medicine as we uncover the beneficial roles of these bacteria in many disease processes including cancer. We and others have reported previously that probiotic bacteria play a significant role in the activation of many cells including the cancer fighting natural killer (NK) cells. NK cells are the key immune effectors which control tumor growth and metastasis due to their ability to mediate direct cytotoxicity and/or differentiation of cancer stem cells/undifferentiated tumors through secreted and membrane bound interferon-gamma and tumor necrosis factor-alpha. In this review, we present an overview of recent studies from our laboratory and those of the others on their beneficial effects on immune cell function in particular on NK cells. In addition, we also highlight the current understanding of the role of probiotics in enhancement of the effectiveness of cancer therapeutics. Moreover, we discuss the functional impairment of cancer patients' NK cells and the role of probiotics in reversal of such functional impairment. NK cell-based immuno-therapies in combination with well-selected strains of probiotic bacteria may probably represent one of the best adjunct therapeutic approaches to prevent and treat cancer in the future.


Assuntos
Células Matadoras Naturais/citologia , Ativação Linfocitária , Neoplasias , Probióticos , Humanos , Neoplasias/terapia , Probióticos/uso terapêutico
15.
Crit Rev Immunol ; 40(2): 167-171, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32749094

RESUMO

Coronavirus disease 2019 (COVID-19) poses a great public health challenge worldwide. While studies on the effects of SARS-CoV-2 on immune cell function continue to progress, we know very little about the significance of depletion of key immune effectors by the virus in the mortality and morbidity of the disease. This commentary reviews what is known thus far about the effects of the virus on natural killer (NK) cells, the major cell type responsible for the destruction and removal of virally infected cells. It also highlights the necessity of comprehensive studies of NK cells in COVID-19 patients and animal models to better understand the role and significance of reported NK depletion and functional inactivation in disease morbidity and mortality, in the hopes of designing effective therapeutic interventions for the disease.


Assuntos
Infecções por Coronavirus/patologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/virologia , Pneumonia Viral/patologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Betacoronavirus/imunologia , Linfócitos T CD8-Positivos/imunologia , COVID-19 , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/terapia , Humanos , Interferon gama/imunologia , Neutrófilos/imunologia , Pandemias , Pneumonia Viral/imunologia , Pneumonia Viral/terapia , SARS-CoV-2 , Fator de Necrose Tumoral alfa/imunologia
16.
Crit Rev Immunol ; 40(2): 93-133, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32749091

RESUMO

We have previously demonstrated that natural killer (NK) cells are the main immune effectors that can mediate selection and differentiation of different cancer stem cells and undifferentiated tumors via lysis and secreted or membrane-bound interferon-γ and tumor necrosis factor-α, respectively. This leads to growth inhibition and tumor metastasis curtailment. In this review, we present an overview of our findings on NK cell biology and its significance in selection and differentiation of stem-like tumors using in vitro and in vivo studies conducted in nonobese diabetic/severe combined immunodeficiency (scid)/interleukin-Rγ--, humanized-bone-marrow/liver/thymus (hu-BLT) mice, and those of human cancer patients. Moreover, we present recent advances in NK cell expansion and therapeutic delivery and discuss the superiority of allogeneic supercharged NK cells over their autologous counterparts for cancer treatment. We review potential loss of NK cell numbers and function at neoplastic and preneoplastic stages of tumorigenesis as a potential mechanism for pancreatic cancer induction and progression. We believe that NK cells should be placed highly in the armamentarium of tumor immunotherapy due to their indispensable role in targeting cancer stem-like/poorly differentiated tumors and a variety of other key NK cell functions that are discussed in this report, including their role in CD8+ T-cell expansion and targeting gene knockout or dedifferentiated tumors. The combination of allogeneic supercharged NK cells and other immunotherapeutic strategies such as oncolytic viruses, antibody-dependent cellular cytotoxicity-inducing antibodies, checkpoint inhibitors, chimeric antigen receptor (CAR)-T cells and CAR-NK cells, chemotherapeutics, and radiotherapeutic strategies can be used for optimal eradication of tumors.


Assuntos
Imunidade , Hospedeiro Imunocomprometido , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Neoplasias/etiologia , Neoplasias/metabolismo , Animais , Biomarcadores , Diferenciação Celular/imunologia , Terapia Combinada , Gerenciamento Clínico , Modelos Animais de Doenças , Suscetibilidade a Doenças , Humanos , Camundongos Knockout , Neoplasias/patologia , Neoplasias/terapia
17.
Semin Cancer Biol ; 53: 168-177, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30063965

RESUMO

Cysteine cathepsins are lysosomal peptidases involved on one hand in general intracellular protein degradation and, on the other, in the regulation of a number of specific physiological processes. Their integral role in extracellular matrix degradation and in processing growth factors, hormones and adhesion proteins is a driving force in cancer progression, triggering tumor proliferation, invasion, angiogenesis and metastasis. Cancer stem cells are proposed to be a main factor of tumor initialization, heterogeneity and resistance to therapy. Recent studies have uncovered increased expression, aberrant localization and disturbed functions of certain cysteine cathepsins in these cells, in particular in glioblastoma stem cells. Here, we review the research that have underlined the expression patterns and roles of cysteine cathepsins in cancer stem cells, and emphasize the involvement of cysteine cathepsins in caspase-independent cell death and in regulating interaction between cancer stem cells and immune cells such as natural killer cells.


Assuntos
Catepsinas/metabolismo , Cisteína Endopeptidases/metabolismo , Lisossomos/enzimologia , Neoplasias/enzimologia , Células-Tronco Neoplásicas/enzimologia , Animais , Apoptose/genética , Catepsinas/genética , Cisteína Endopeptidases/genética , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias/genética , Neoplasias/patologia , Células-Tronco Neoplásicas/metabolismo
18.
Semin Cancer Biol ; 53: 178-188, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30081230

RESUMO

We have recently shown that natural killer (NK) cells select and differentiate cancer stem cells (CSCs)/undifferentiated tumors via secreted and membrane bound IFN-gamma (IFN-γ) and TNF-alpha (TNF-α), preventing tumor growth and inducing remodeling of the tumor microenvironment. Since many conventional therapeutic strategies, including chemotherapy and radiotherapy remain fairly unsuccessful in treating CSCs/poorly differentiated tumors, there has been an increasing interest in NK cell-targeted immunotherapy for the treatment of aggressive tumors. In our recent studies, we used humanized-BLT (hu-BLT) mouse model with transplanted human bone marrow, liver and thymus to demonstrate the efficacy of adoptive transfer of ex vivo expanded, super-charged NK cells in selection and differentiation of stem-like tumors within the context of a fully reconstituted human immune system. Furthermore, we have demonstrated that CSCs differentiated with split-anergized NK cells prior to implantation in hu-BLT mice were not able to grow or metastasize. However, when NK cell-mediated tumor differentiation was blocked by the addition of antibodies to IFN-γ and TNF-α, tumors grew and metastasized. In this review, we present current advances in NK cell expansion and therapeutic delivery, and discuss the utility of allogeneic super-charged NK cells in treatment of cancer patients. In addition, NK suppression occurs not only at the stage of overt cancer, but also at the pre-neoplastic stage. Therefore, due to the indispensable role of NK cells in targeting CSCs/undifferentiated tumors and their role in differentiation of the tumors, NK cells should be placed high in the armamentarium of tumor immunotherapy.


Assuntos
Células Matadoras Naturais/imunologia , Neoplasias Bucais/imunologia , Células-Tronco Neoplásicas/imunologia , Neoplasias Pancreáticas/imunologia , Microambiente Tumoral/imunologia , Animais , Humanos , Imunoterapia , Neoplasias Bucais/patologia , Neoplasias Bucais/terapia , Metástase Neoplásica , Células-Tronco Neoplásicas/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/terapia , Carga Tumoral/imunologia
19.
Cancer Immunol Immunother ; 67(12): 1931-1938, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29748898

RESUMO

Cysteine cathepsins are lysosomal peptidases involved in the regulation of innate and adaptive immune responses. Among the diverse processes, regulation of granule-dependent cytotoxicity of cytotoxic T-lymphocytes (CTLs) and natural killer (NK) cells during cancer progression has recently gained significant attention. The function of cysteine cathepsins is regulated by endogenous cysteine protease inhibitors-cystatins. Whereas other cystatins are generally cytosolic or extracellular proteins, cystatin F is present in endosomes and lysosomes and is thus able to regulate the activity of its target directly. It is delivered to endosomal/lysosomal vesicles as an inactive, disulphide-linked dimer. Proteolytic cleavage of its N-terminal part leads to the monomer, the only form that is a potent inhibitor of cathepsins C, H and L, involved in the activation of granzymes and perforin. In NK cells and CTLs the levels of active cathepsin C and of granzyme B are dependent on the concentration of monomeric, active cystatin F. In tumour microenvironment, inactive dimeric cystatin F can be secreted from tumour cells or immune cells and further taken up by the cytotoxic cells. Subsequent monomerization and inhibition of cysteine cathepsins within the endosomal/lysosomal vesicles impairs granzyme and perforin activation, and provokes cell anergy. Further, the glycosylation pattern has been shown to be important in controlling secretion of cystatin F from target cells, as well as internalization by cytotoxic cells and trafficking to endosomal/lysosomal vesicles. Cystatin F is therefore an important mediator used by bystander cells to reduce NK and T-cell cytotoxicity.


Assuntos
Cistatinas/metabolismo , Citotoxicidade Imunológica , Imunomodulação , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Animais , Humanos , Imunidade , Ativação Linfocitária
20.
J Biol Chem ; 291(39): 20602-16, 2016 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-27514746

RESUMO

Injury to the barrier tissue initiates a rapid distribution of myeloid immune cells from bone marrow, which guide sound wound healing. Bisphosphonates, a widely used anti-bone resorptive drug with minimal systemic side effects, have been linked to an abnormal wound healing in the oral barrier tissue leading to, in some cases, osteonecrosis of the jaw (ONJ). Here we report that the development of ONJ may involve abnormal phenotypic plasticity of Ly6G+/Gr1+ myeloid cells in the oral barrier tissue undergoing tooth extraction wound healing. A bolus intravenous zoledronate (ZOL) injection to female C57Bl/6 mice followed by maxillary first molar extraction resulted in the development of ONJ-like lesion during the second week of wound healing. The multiplex assay of dissociated oral barrier cells exhibited the secretion of cytokines and chemokines, which was significantly modulated in ZOL mice. Tooth extraction-induced distribution of Ly6G+/Gr1+ cells in the oral barrier tissue increased in ZOL mice at week 2. ONJ-like lesion in ZOL mice contained Ly6G+/Gr1+ cells with abnormal size and morphology as well as different flow cytometric staining intensity. When anti-Ly6G (Gr1) antibody was intraperitoneally injected for 5 days during the second week of tooth extraction, CD11b+GR1(hi) cells in bone marrow and Ly6G+ cells in the oral barrier tissue were depleted, and the development of ONJ-like lesion was significantly attenuated. This study suggests that local modulation of myeloid cell plasticity in the oral barrier tissue may provide the basis for pathogenesis and thus therapeutic as well as preventive strategy of ONJ.


Assuntos
Osteonecrose da Arcada Osseodentária Associada a Difosfonatos/imunologia , Células Mieloides/imunologia , Cicatrização/imunologia , Animais , Antígenos Ly/imunologia , Osteonecrose da Arcada Osseodentária Associada a Difosfonatos/patologia , Medula Óssea/imunologia , Medula Óssea/patologia , Feminino , Camundongos , Boca/patologia , Células Mieloides/patologia , Extração Dentária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA