RESUMO
The steroidal-based drug 2-ethyloestradiol-3,17-O,O-bis-sulphamate (STX243) has been developed as a potent antiangiogenic and antitumour compound. The objective of this study was to ascertain whether STX243 is more active in vivo than the clinically relevant drug 2-methoxyoestradiol (2-MeOE2) and the structurally similar compound 2-MeOE2-3,17-O,O-bis-sulphamate (STX140). The tumour growth inhibition efficacy, antiangiogenic potential and pharmacokinetics of STX243 were examined using four in vivo models. Both STX243 and STX140 were capable of retarding the growth of MDA-MB-231 xenograft tumours (72 and 63%, respectively), whereas no inhibition was observed for animals treated with 2-MeOE2. Further tumour inhibition studies showed that STX243 was also active against MCF-7 paclitaxel-resistant tumours. Using a Matrigel plug-based model, in vivo angiogenesis was restricted with STX243 and STX140 (50 and 72%, respectively, using a 10 mg kg(-1) oral dose), thereby showing the antiangiogenic activity of both compounds. The pharmacokinetics of STX243 were examined at two different doses using adult female rats. The compound was orally bioavailable (31% after a single 10 mg kg(-1) dose) and resistant to metabolism. These results show that STX243 is a potent in vivo drug and could be clinically effective at treating a number of oncological conditions.
Assuntos
Inibidores da Angiogênese/farmacologia , Neoplasias da Mama/irrigação sanguínea , Neoplasias da Mama/tratamento farmacológico , Estradiol/análogos & derivados , Ácidos Sulfônicos/farmacologia , 2-Metoxiestradiol , Inibidores da Angiogênese/farmacocinética , Animais , Linhagem Celular Tumoral , Estradiol/farmacocinética , Estradiol/farmacologia , Estrenos/farmacocinética , Estrenos/farmacologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos WistarRESUMO
Steroid sulphatase (STS) inhibitors have been developed primarily for the treatment of hormone-dependent breast cancer, but may also have utility for the treatment of a number of androgen-dependent skin conditions. STS regulates the hydrolysis of steroid sulphates, such as oestrone sulphate (E1S) and dehydroepiandrosterone sulphate, (DHEAS). Liberated oestrone (E1) can be converted to biologically active oestradiol (E2) while dehydroepiandrosterone (DHEA) can undergo reduction to testosterone or aromatisation to E1. In this study the ability of the STS inhibitor STX64 (BN83495) and its N,N-dimethyl analogue (STX289) to inhibit liver and skin STS when applied orally or topically to nude mice was examined. Oral administration at 1 and 10 mg/kg resulted in almost complete inhibition of skin and liver STS. When applied topically to the dorsal neck region at 1.0 and 10 mg/kg not only skin but, unexpectedly, also liver STS was effectively inhibited. An investigation into the metabolism of these two compounds by HepG2 liver carcinoma cells, with high-performance liquid chromatography (HPLC) analysis, was also undertaken. In the presence of HepG2 cells a similar degree of desulphamoylation of STX64 (68%) or de-N, N-dimethylsulphamoylation of STX289 (66%) occurred over a 3h period. In the absence of cells, however, STX289 was resistant to de-N, N-dimethylsulphamoylation whereas STX64 was completely desulphamoylated, demonstrating the more favourable pharmaceutical profile of STX289 for development for topical application. It is concluded that both STX64 and STX289 are not only effective inhibitors of skin STS, but also liver STS when applied topically. These findings suggest that it may be possible to develop a formulation for the percutaneous administration of STS inhibitors, but also that this class of compound may have therapeutic potential for the treatment of a number of skin disorders.