Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Reprod Sci ; 31(6): 1541-1550, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38347382

RESUMO

Vitamin D was well-known to be associated with gestational diabetes mellitus (GDM). Insulin-like growth factor-I (IGF-I) has been linked to vitamin D and GDM, respectively. We hypothesize that changes in IGF-I metabolism induced by 25(OH)D3 might contribute to GDM. Therefore, we investigated the independent and combined relationships of serum 25(OH)D3 and IGF-I concentrations with GDM risk, and the mediation effect of IGF-I on 25(OH)D3. A total of 278 pregnant women (including 125 cases and 153 controls) were recruited in our current study. Maternal serum 25(OH)D3 and IGF-I were measured in the second trimester. Logistic regression models were used to estimate the associations of 25(OH)D3 and IGF-I concentrations with the risk of GDM. Mediation analyses were used to explore the mediation effect of IGF-I on the association between 25(OH)D3 and the risk of GDM. After adjusted for the confounded factors, both the third and fourth quartile of 25(OH)D3 decreased the risk of GDM (OR = 0.226; 95% CI, 0.103-0.494; OR = 0.109; 95% CI, 0.045-0.265, respectively) compared to the first quartile of 25(OH)D3. However, the third and fourth quartile of serum IGF-I (OR = 5.174; 95% CI, 2.287-11.705; OR = 12.784; 95% CI, 5.292-30.879, respectively) increased the risk of GDM compared to the first quartile of serum IGF-I. Mediation analyses suggested that 19.62% of the associations between 25(OH)D3 and GDM might be mediated by IGF-I. The lower concentration of serum 25(OH)D3 or higher IGF-I in the second trimester was associated with an increased risk of GDM. The serum IGF-I level might be a potential mediator between 25(OH)D3 and GDM.


Assuntos
Diabetes Gestacional , Fator de Crescimento Insulin-Like I , Vitamina D , Adulto , Feminino , Humanos , Gravidez , Calcifediol/sangue , Estudos de Casos e Controles , Diabetes Gestacional/sangue , Fator de Crescimento Insulin-Like I/metabolismo , Fatores de Risco , Vitamina D/sangue
2.
CNS Neurosci Ther ; 30(9): e70018, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39252474

RESUMO

OBJECTIVE: Nowadays, the prevalence of cognitive impairment in women has gradually increased, especially in postmenopausal women. There were few studies on the mechanistic effects of iron exposure on neurotoxicity in postmenopausal women. The aim of this study is to investigate the effect of iron accumulation on cognitive ability in ovariectomized mice and its possible mechanism and to provide a scientific basis for the prevention of cognitive dysfunction in postmenopausal women. METHODS: Female C57BL/6N ovariectomized model mice were induced with ferric citrate (FAC). The mice were randomly divided into 5 groups: control, sham, ovariectomized (Ovx), Ovx + 50 mg/kg FAC (Ovx + l), and Ovx + 100 mg/kg FAC (Ovx + h). The impact of motor and cognitive function was verified by a series of behavioral tests. The levels of serum iron parameters, malondialdehyde, and superoxide dismutase were measured. The ultrastructure of mice hippocampal microglia was imaged by transmission electron microscopy. The differential expression of hippocampal proteins was analyzed by Tandem Mass Tag labeling. RESULTS: Movement and cognitive function in Ovx + l/Ovx + h mice were significantly decreased compared to control and Sham mice. Then, iron exposure caused histopathological changes in the hippocampus of mice. In addition, proteomic analysis revealed that 29/27/41 proteins were differentially expressed in the hippocampus when compared by Ovx vs. Sham, Ovx + l vs. Ovx, as well as Ovx + h vs. Ovx + l groups, respectively. Moreover, transferrin receptor protein (TFR1) and divalent metal transporter 1 (DMT1) protein expression were significantly increased in the iron accumulation mice model with ovariectomy. CONCLUSION: Iron exposure could cause histopathological damage in the hippocampus of ovariectomised mice and, by altering hippocampal proteomics, particularly the expression of hippocampal iron metabolism-related proteins, could further influence cognitive impairment in ovariectomized mice.


Assuntos
Modelos Animais de Doenças , Compostos Férricos , Hipocampo , Ferro , Camundongos Endogâmicos C57BL , Ovariectomia , Animais , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Camundongos , Ferro/metabolismo , Compostos Férricos/toxicidade , Compostos Férricos/farmacologia , Aprendizagem em Labirinto/efeitos dos fármacos , Disfunção Cognitiva/metabolismo , Transtornos Cognitivos/patologia , Transtornos Cognitivos/induzido quimicamente , Superóxido Dismutase/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Receptores da Transferrina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA