Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Nat Chem Biol ; 20(5): 624-633, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38155304

RESUMO

Cyclic peptides can bind challenging disease targets with high affinity and specificity, offering enormous opportunities for addressing unmet medical needs. However, as with biological drugs, most cyclic peptides cannot be applied orally because they are rapidly digested and/or display low absorption in the gastrointestinal tract, hampering their development as therapeutics. In this study, we developed a combinatorial synthesis and screening approach based on sequential cyclization and one-pot peptide acylation and screening, with the possibility of simultaneously interrogating activity and permeability. In a proof of concept, we synthesized a library of 8,448 cyclic peptides and screened them against the disease target thrombin. Our workflow allowed multiple iterative cycles of library synthesis and yielded cyclic peptides with nanomolar affinities, high stabilities and an oral bioavailability (%F) as high as 18% in rats. This method for generating orally available peptides is general and provides a promising push toward unlocking the full potential of peptides as therapeutics.


Assuntos
Disponibilidade Biológica , Peptídeos Cíclicos , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacocinética , Peptídeos Cíclicos/administração & dosagem , Peptídeos Cíclicos/farmacologia , Administração Oral , Animais , Ratos , Humanos , Ciclização , Biblioteca de Peptídeos , Trombina/metabolismo , Trombina/química , Masculino , Técnicas de Química Combinatória , Acilação
2.
Angew Chem Int Ed Engl ; 63(3): e202308251, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37870189

RESUMO

Cyclic peptides are fascinating molecules abundantly found in nature and exploited as molecular format for drug development as well as other applications, ranging from research tools to food additives. Advances in peptide technologies made over many years through improved methods for synthesis and drug development have resulted in a steady stream of new drugs, with an average of around one cyclic peptide drug approved per year. Powerful technologies for screening random peptide libraries, and de novo generating ligands, have enabled the development of cyclic peptide drugs independent of naturally derived molecules and now offer virtually unlimited development opportunities. In this review, we feature therapeutically relevant cyclic peptides derived from nature and discuss the unique properties of cyclic peptides, the enormous technological advances in peptide ligand development in recent years, and current challenges and opportunities for developing cyclic peptides that address unmet medical needs.


Assuntos
Biblioteca de Peptídeos , Peptídeos Cíclicos , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/química , Descoberta de Drogas/métodos , Desenvolvimento de Medicamentos
3.
Angew Chem Int Ed Engl ; 63(26): e202400350, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38602024

RESUMO

Macrocycles offer an attractive format for drug development due to their good binding properties and potential to cross cell membranes. To efficiently identify macrocyclic ligands for new targets, methods for the synthesis and screening of large combinatorial libraries of small cyclic peptides were developed, many of them using thiol groups for efficient peptide macrocyclization. However, a weakness of these libraries is that invariant thiol-containing building blocks such as cysteine are used, resulting in a region that does not contribute to library diversity but increases molecule size. Herein, we synthesized a series of structurally diverse thiol-containing elements and used them for the combinatorial synthesis of a 2,688-member library of small, structurally diverse peptidic macrocycles with unprecedented skeletal complexity. We then used this library to discover potent thrombin and plasma kallikrein inhibitors, some also demonstrating favorable membrane permeability. X-ray structure analysis of macrocycle-target complexes showed that the size and shape of the newly developed thiol elements are key for binding. The strategy and library format presented in this work significantly enhance structural diversity by allowing combinatorial modifications to a previously invariant region of peptide macrocycles, which may be broadly applied in the development of membrane permeable therapeutics.


Assuntos
Compostos Macrocíclicos , Compostos Macrocíclicos/química , Compostos Macrocíclicos/síntese química , Humanos , Permeabilidade da Membrana Celular , Peptídeos Cíclicos/química , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/metabolismo , Estrutura Molecular , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/metabolismo , Trombina/metabolismo , Trombina/antagonistas & inibidores , Trombina/química , Cristalografia por Raios X , Compostos de Sulfidrila/química , Modelos Moleculares
4.
Angew Chem Int Ed Engl ; 62(33): e202306036, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37311172

RESUMO

Herein, we report a novel strategy for the modification of peptides based on the introduction of highly reactive hypervalent iodine reagents-ethynylbenziodoxolones (EBXs)-onto peptides. These peptide-EBXs can be readily accessed, by both solution- and solid-phase peptide synthesis (SPPS). They can be used to couple the peptide to other peptides or a protein through reaction with Cys, leading to thioalkynes in organic solvents and hypervalent iodine adducts in water buffer. Furthermore, a photocatalytic decarboxylative coupling to the C-terminus of peptides was developed using an organic dye and was also successful in an intramolecular fashion, leading to macrocyclic peptides with unprecedented crosslinking. A rigid linear aryl alkyne linker was essential to achieve high affinity for Keap1 at the Nrf2 binding site with potential protein-protein interaction inhibition.


Assuntos
Iodo , Indicadores e Reagentes , Proteína 1 Associada a ECH Semelhante a Kelch , Iodo/química , Fator 2 Relacionado a NF-E2 , Peptídeos/química
5.
Angew Chem Int Ed Engl ; 60(14): 7570-7575, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33427387

RESUMO

Arsenosugars are a group of arsenic-containing ribosides that are found predominantly in marine algae but also in terrestrial organisms. It has been proposed that arsenosugar biosynthesis involves a key intermediate 5'-deoxy-5'-dimethylarsinoyl-adenosine (DDMAA), but how DDMAA is produced remains elusive. Now, we report characterization of ArsS as a DDMAA synthase, which catalyzes a radical S-adenosylmethionine (SAM)-mediated alkylation (adenosylation) of dimethylarsenite (DMAsIII ) to produce DDMAA. This radical-mediated reaction is redox neutral, and multiple turnover can be achieved without external reductant. Phylogenomic and biochemical analyses revealed that DDMAA synthases are widespread in distinct bacterial phyla with similar catalytic efficiencies; these enzymes likely originated from cyanobacteria. This study reveals a key step in arsenosugar biosynthesis and also a new paradigm in radical SAM chemistry, highlighting the catalytic diversity of this superfamily of enzymes.


Assuntos
Adenosina/química , Monossacarídeos/biossíntese , S-Adenosilmetionina/química , Alquilação , Arseniatos , Arsenitos/química , Catálise , Controle de Medicamentos e Entorpecentes , Escherichia coli/genética , Radicais Livres/química , Oxirredução , Transdução de Sinais , Espectrometria de Massas em Tandem
6.
Angew Chem Int Ed Engl ; 60(36): 19957-19964, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34164914

RESUMO

Aminomalonate (Ama) is a widespread structural motif in Nature, whereas its biosynthetic route is only partially understood. In this study, we show that a radical S-adenosylmethionine (rSAM) enzyme involved in cyclophane biosynthesis exhibits remarkable catalytic promiscuity. This enzyme, named three-residue cyclophane forming enzyme (3-CyFE), mainly produces cyclophane in vivo, whereas it produces formylglycine (FGly) as a major product and barely produce cyclophane in vitro. Importantly, the enzyme can further oxidize FGly to produce Ama. Bioinformatic study revealed that 3-CyFEs have evolved from a common ancestor with anaerobic sulfatase maturases (anSMEs), and possess a similar set of catalytic residues with anSMEs. Remarkably, the enzyme does not need leader peptide for activity and is fully active on a truncated peptide containing only 5 amino acids of the core sequence. Our work discloses the first ribosomal path towards Ama formation, providing a possible hint for the rich occurrence of Ama in Nature.


Assuntos
Malonatos/metabolismo , Peptídeos/metabolismo , S-Adenosilmetionina/metabolismo , Sulfatases/metabolismo , Radicais Livres/química , Radicais Livres/metabolismo , Malonatos/química , Estrutura Molecular , Peptídeos/química , Processamento de Proteína Pós-Traducional , S-Adenosilmetionina/química , Sulfatases/química
7.
Angew Chem Int Ed Engl ; 59(23): 8880-8884, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32065719

RESUMO

Sulfur-based homolytic substitution (SH reaction) plays an important role in synthetic chemistry, yet whether such a reaction could occur on the positively charged sulfonium compounds remains unknown. In the study of the anaerobic coproporphyrinogen III oxidase HemN, a radical S-adenosyl-l-methionine (SAM) enzyme involved in heme biosynthesis, we observed the production of di-(5'-deoxyadenosyl)methylsulfonium, which supports a deoxyadenosyl (dAdo) radical-mediated SH reaction on the sulfonium center of SAM. The sulfonium-based SH reactions were then investigated in detail by density functional theory calculations and model reactions, which showed that this type of reactions is thermodynamically favorable and kinetically competent. These findings represent the first report of sulfonium-based SH reactions, which could be useful in synthetic chemistry. Our study also demonstrates the remarkable catalytic promiscuity of the radical SAM superfamily enzymes.


Assuntos
Enzimas/química , Enzimas/metabolismo , S-Adenosilmetionina/metabolismo , Compostos de Sulfônio/química , Biocatálise , Radicais Livres/química , Cinética , Termodinâmica
8.
Biochemistry ; 58(1): 36-39, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30398855

RESUMO

Sulfoxides and sulfones are commonly found in nature as a result of thioether oxidation, whereas only a very few enzymes have been found to metabolize these compounds. Utilizing the strong reduction potential of the [4Fe-4S] cluster of radical S-adenosyl-l-methionine (SAM) enzymes, we herein report the first enzyme-catalyzed reductive cleavage of sulfoxide and sulfone. We show two radical SAM enzymes, tryptophan lyase NosL and the class C radical SAM methyltransferase NosN, are able to act on a sulfoxide SAHO and a sulfone SAHO2, both of which are structurally similar to SAM. NosL cleaves all of the three bonds (i.e., S-C(5'), S-C(γ), and S-O) connecting the sulfur center of SAHO, with a preference for S-C(5') bond cleavage. Similar S-C cleavage activity was also found for SHAO2, but no S-O cleavage was observed. In contrast to NosL, NosN almost exclusively cleaves the S-C(5') bonds of SAHO and SAHO2 with much higher efficiencies. Our study provides valuable insights into the [4Fe-4S] cluster-mediated reduction reactions and highlights the remarkable catalytic promiscuity of radical SAM enzymes.


Assuntos
Carbono-Carbono Liases/metabolismo , Metiltransferases/metabolismo , S-Adenosilmetionina/química , Safrol/análogos & derivados , Sulfonas/química , Triptofano/metabolismo , S-Adenosilmetionina/metabolismo , Safrol/química , Safrol/metabolismo , Sulfonas/metabolismo
9.
Org Biomol Chem ; 17(7): 1809-1812, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30520933

RESUMO

The radical S-adenosylmethionine (SAM) superfamily is currently the largest known enzyme family. These enzymes reductively cleave SAM to produce a highly reactive 5'-deoxyadenosyl (dAdo) radical, which abstracts a hydrogen from the substrate and initiates diverse reactions. The canonic dAdo radical-mediated hydrogen abstraction can be changed to radical addition reactions by using olefin-containing substrate analogues, which result in adenosylation reactions. Here we report investigation of the adenosylation reactions catalyzed by four radical SAM l-Tyr lyases (RSTLs), including HydG, FbiC, and two ThiH enzymes from different organisms. We show RSTLs have diverse substrate specificity, and ThiH from E. coli exhibits the highest substrate tolerance toward the tested substrates. We also show ThiH from Clostridium berjerinckii does not act on 4-amino-l-phenylalanine, but catalyzes adenosylation of the corresponding olefin-containing analogue, suggesting adenosylation may occur more easily than the canonic radical SAM reactions. Our study highlights the remarkable catalytic promiscuity of radical SAM enzyme and the potential in using these enzymes for the synthesis of nucleotide-containing compounds.


Assuntos
Adenosina/biossíntese , S-Adenosilmetionina/metabolismo , Tirosina Fenol-Liase/metabolismo , Adenosina/química , Biocatálise , Radicais Livres/química , Radicais Livres/metabolismo , Estrutura Molecular , S-Adenosilmetionina/química
10.
Angew Chem Int Ed Engl ; 58(19): 6235-6238, 2019 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-30884058

RESUMO

HemN is a radical S-adenosyl-l-methionine (SAM) enzyme that catalyzes the oxidative decarboxylation of coproporphyrinogen III to produce protoporphyrinogen IX, an intermediate in heme biosynthesis. HemN binds two SAM molecules in the active site, but how these two SAMs are utilized for the sequential decarboxylation of the two propionate groups of coproporphyrinogen III remains largely elusive. Provided here is evidence showing that in HemN catalysis a SAM serves as a hydrogen relay which mediates a radical-based hydrogen transfer from the propionate to the 5'-deoxyadenosyl (dAdo) radical generated from another SAM in the active site. Also observed was an unexpected shunt product resulting from trapping of the SAM-based methylene radical by the vinyl moiety of the mono-decarboxylated intermediate, harderoporphyrinogen. These results suggest a major revision of the HemN mechanism and reveal a new paradigm of the radical-mediated hydrogen transfer in radical SAM enzymology.


Assuntos
Proteínas de Bactérias/metabolismo , Coproporfirinogênio Oxidase/metabolismo , Biocatálise , Domínio Catalítico , Coproporfirinogênios/metabolismo , Escherichia coli/metabolismo , Hidrogênio/química , Hidrogênio/metabolismo , Metano/análogos & derivados , Metano/química , Ligação Proteica , Protoporfirinas/metabolismo , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo
11.
Angew Chem Int Ed Engl ; 58(52): 18793-18797, 2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31565827

RESUMO

Sactionine-containing antibiotics (sactibiotics) are a growing class of peptide antibiotics belonging to the ribosomally synthesized and post-translationally modified peptide (RiPP) superfamily. We report the characterization of thuricin Z, a novel sactibiotic from Bacillus thuringiensis. Unusually, the biosynthesis of thuricin Z involves two radical S-adenosylmethionine (SAM) enzymes, ThzC and ThzD. Although ThzC and ThzD are highly divergent from each other, these two enzymes produced the same sactionine ring in the precursor peptide ThzA in vitro. Thuricin Z exhibits narrow-spectrum antibacterial activity against Bacillus cereus. A series of analyses, including confocal laser scanning microscopy, ultrathin-sectioning transmission electron microscopy, scanning electron microscopy, and large-unilamellar-vesicle-based fluorescence analysis, suggested that thuricin Z binds to the bacterial cell membrane and leads to membrane permeabilization.


Assuntos
Antibacterianos/uso terapêutico , Bacteriocinas/uso terapêutico , Membrana Celular/efeitos dos fármacos , Antibacterianos/farmacologia , Bacteriocinas/farmacologia , Humanos
12.
J Am Chem Soc ; 140(4): 1365-1371, 2018 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-29300094

RESUMO

Regiospecific dehydration of vicinal diols by enzymes is a difficult reaction that usually requires activation by dedicated organic cofactors. The enzymatic use of radical-based chemistry is an effective but challenging alternative as radical intermediates are difficult to control. Here we report the X-ray structure of the radical S-adenosyl-l-methionine (SAM) dehydratase AprD4 involved in the biosynthesis of the aminoglycoside (AG) antibiotic apramycin. Using in vitro characterizations and theoretical calculations based on our crystal structure, we have been able to propose a detailed mechanism of AprD4 catalysis, which involves a complex partially substrate-induced proton relay network in the enzyme active site and highlights the key role of the protein matrix in driving high-energy intermediates.


Assuntos
Álcoois/metabolismo , Hidroliases/metabolismo , Prótons , S-Adenosilmetionina/metabolismo , Álcoois/química , Biocatálise , Cristalografia por Raios X , Desidratação , Radicais Livres/química , Radicais Livres/metabolismo , Hidroliases/química , Modelos Moleculares , Teoria Quântica , S-Adenosilmetionina/química , Streptomyces/enzimologia , Especificidade por Substrato
13.
Chemistry ; 24(21): 5406-5422, 2018 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-28991382

RESUMO

Bacterial resistance to existing drugs is becoming a serious public health issue, urging extensive search for new antibiotics. Teixobactin, a cyclic depsipeptide discovered in a screen of uncultured bacteria, shows potent activity against all the tested Gram-positive bacteria. Remarkably, no teixobactin-resistant bacterial strain has been obtained despite extensive efforts, highlighting the great potential of teixobactin as a lead compound in the fight against antimicrobial resistance (AMR). This review summarizes recent progresses in the understanding of many aspects of teixobactin, including chemical structure, biological activity, biosynthetic pathway, and mode of action. We also discuss the different synthetic strategies in producing teixobactin and its analogues, and the structure-activity relationship (SAR) studies.


Assuntos
Depsipeptídeos/farmacologia , Bactérias Gram-Positivas/efeitos dos fármacos , Antibacterianos/química , Infecções Bacterianas , Depsipeptídeos/química , Humanos , Testes de Sensibilidade Microbiana , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade
14.
J Org Chem ; 83(13): 7271-7275, 2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29357665

RESUMO

A chemoenzymatic approach for the synthesis of teixobactin analogues has been established by using the tandem thioesterase (TE) of the nonribosomal peptide synthase (NRPS) Txo2. We show that, unlike the closely related counterparts involved in lysobactin biosynthesis (in which the N-terminal TE is solely responsible for the lactonization reaction), the two teixobactin TE domains are functionally exchangeable and likely act synergistically, representing an unprecedented off-loading mechanism in NRPS enzymology. The substrate specificity of this tandem TE was also investigated in this study.


Assuntos
Depsipeptídeos/síntese química , Esterases/metabolismo , Sequência de Aminoácidos , Cromatografia Líquida de Alta Pressão/métodos , Depsipeptídeos/química , Espectrometria de Massas/métodos , Conformação Proteica , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
15.
Angew Chem Int Ed Engl ; 57(22): 6601-6604, 2018 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-29603551

RESUMO

The radical S-adenosylmethionine (SAM) superfamily enzymes cleave SAM reductively to generate a highly reactive 5'-deoxyadenosyl (dAdo) radical, which initiates remarkably diverse reactions. Unlike most radical SAM enzymes, the class C radical SAM methyltransferase NosN binds two SAMs in the active site, using one SAM to produce a dAdo radical and the second as a methyl donor. Here, we report a mechanistic investigation of NosN in which an allyl analogue of SAM (allyl-SAM) was used. We show that NosN cleaves allyl-SAM efficiently and the resulting dAdo radical can be captured by the olefin moieties of allyl-SAM or 5'-allylthioadenosine (ATA), the latter being a derivative of allyl-SAM. Remarkably, we found that NosN produced two distinct sets of products in the presence and absence of the methyl acceptor substrate, thus suggesting substrate-triggered production of ATA from allyl-SAM. We also show that NosN produces S-adenosylhomocysteine from 5'-thioadenosine and homoserine lactone. These results support the idea that 5'-methylthioadenosine is the direct methyl donor in NosN reactions, and demonstrate great potential to modulate radical SAM enzymes for novel catalytic activities.

16.
Angew Chem Int Ed Engl ; 56(14): 3857-3861, 2017 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-28112859

RESUMO

S-Adenosylmethionine (SAM) is one of the most common co-substrates in enzyme-catalyzed methylation reactions. Most SAM-dependent reactions proceed through an SN 2 mechanism, whereas a subset of them involves radical intermediates for methylating non-nucleophilic substrates. Herein, we report the characterization and mechanistic investigation of NosN, a class C radical SAM methyltransferase involved in the biosynthesis of the thiopeptide antibiotic nosiheptide. We show that, in contrast to all known SAM-dependent methyltransferases, NosN does not produce S-adenosylhomocysteine (SAH) as a co-product. Instead, NosN converts SAM into 5'-methylthioadenosine as a direct methyl donor, employing a radical-based mechanism for methylation and releasing 5'-thioadenosine as a co-product. A series of biochemical and computational studies allowed us to propose a comprehensive mechanism for NosN catalysis, which represents a new paradigm for enzyme-catalyzed methylation reactions.


Assuntos
Antibacterianos/biossíntese , Metiltransferases/metabolismo , S-Adenosilmetionina/metabolismo , Antibacterianos/química , Catálise , Radicais Livres/química , Radicais Livres/metabolismo , Metilação , Metiltransferases/química , Estrutura Molecular , S-Adenosilmetionina/química , Tiazóis/química , Tiazóis/metabolismo
17.
J Am Chem Soc ; 138(20): 6427-35, 2016 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-27120352

RESUMO

Apramycin is a clinically interesting aminoglycoside antibiotic (AGA) containing a highly unique bicyclic octose moiety, and this octose is deoxygenated at the C3 position. Although the biosynthetic pathways for most 2-deoxystreptamine-containing AGAs have been well characterized, the pathway for apramycin biosynthesis, including the C3 deoxygenation process, has long remained unknown. Here we report detailed investigation of apramycin biosynthesis by a series of genetic, biochemical and bioinformatical studies. We show that AprD4 is a novel radical S-adenosyl-l-methionine (SAM) enzyme, which uses a noncanonical CX3CX3C motif for binding of a [4Fe-4S] cluster and catalyzes the dehydration of paromamine, a pseudodisaccharide intermediate in apramycin biosynthesis. We also show that AprD3 is an NADPH-dependent reductase that catalyzes the reduction of the dehydrated product from AprD4-catalyzed reaction to generate lividamine, a C3' deoxygenated product of paromamine. AprD4 and AprD3 do not form a tight catalytic complex, as shown by protein complex immunoprecipitation and other assays. The AprD4/AprD3 enzyme system acts on different pseudodisaccharide substrates but does not catalyze the deoxygenation of oxyapramycin, an apramycin analogue containing a C3 hydroxyl group on the octose moiety, suggesting that oxyapramycin and apramycin are partitioned into two parallel pathways at an early biosynthetic stage. Functional dissection of the C6 dehydrogenase AprQ shows the crosstalk between different AGA biosynthetic gene clusters from the apramycin producer Streptomyces tenebrarius, and reveals the remarkable catalytic versatility of AprQ. Our study highlights the intriguing chemistry in apramycin biosynthesis and nature's ingenuity in combinatorial biosynthesis of natural products.


Assuntos
Nebramicina/análogos & derivados , Oxigênio/química , Aminoglicosídeos/metabolismo , Sequência de Carboidratos , Catálise , Nebramicina/biossíntese , Nebramicina/química , Nebramicina/metabolismo , Oxirredutases/metabolismo , Especificidade por Substrato
18.
Chembiochem ; 17(13): 1191-7, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27028019

RESUMO

Cobalamins comprise a group of cobalt-containing organometallic cofactors that play important roles in cellular metabolism. Although many cobalamin-dependent methyltransferases (e.g., methionine synthase MetH) have been extensively studied, a new group of methyltransferases that are cobalamin-dependent and utilize radical chemistry in catalysis is just beginning to be appreciated. In this Concept article, we summarize recent advances in the understanding of the radical-based and cobalamin-dependent methyltransferases and discuss the functional and mechanistic diversity of this emerging class of enzymes.


Assuntos
Metiltransferases/química , Vitamina B 12/química , Antibacterianos/biossíntese , Metilação , Metiltransferases/genética , Modelos Químicos , Tienamicinas/biossíntese , Tioestreptona/biossíntese
19.
Angew Chem Int Ed Engl ; 55(10): 3334-7, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26837062

RESUMO

The radical S-adenosyl-l-methionine (SAM) enzyme NosL catalyzes the transformation of l-tryptophan into 3-methyl-2-indolic acid (MIA), which is a key intermediate in the biosynthesis of a clinically interesting antibiotic nosiheptide. NosL catalysis was investigated by using the substrate analogue 2-methyl-3-(indol-3-yl)propanoic acid (MIPA), which can be converted into MIA by NosL. Biochemical assays with different MIPA isotopomers in D2 O and H2 O unambiguously indicated that the 5'-deoxyadenosyl (dAdo)-radical-mediated hydrogen abstraction is from the amino group of l-tryptophan and not a protein residue. Surprisingly, the dAdo-radical-mediated hydrogen abstraction occurs at two different sites of MIPA, thereby partitioning the substrate into different reaction pathways. Together with identification of an α,ß-unsaturated ketone shunt product, our study provides valuable mechanistic insight into NosL catalysis and highlights the remarkable catalytic flexibility of radical SAM enzymes.


Assuntos
S-Adenosilmetionina/metabolismo , Cromatografia Líquida , Espectrometria de Massas , Especificidade por Substrato
20.
Angew Chem Int Ed Engl ; 55(39): 11845-8, 2016 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-27573794

RESUMO

Radical S-adenosyl-l-methionine (SAM) enzymes utilize a [4Fe-4S] cluster to bind SAM and reductively cleave its carbon-sulfur bond to produce a highly reactive 5'-deoxyadenosyl (dAdo) radical. In almost all cases, the dAdo radical abstracts a hydrogen atom from the substrates or from enzymes, thereby initiating a highly diverse array of reactions. Herein, we report a change of the dAdo radical-based chemistry from hydrogen abstraction to radical addition in the reaction of the radical SAM enzyme NosL. This change was achieved by using a substrate analogue containing an olefin moiety. We also showed that two SAM analogues containing different nucleoside functionalities initiate the radical-based reactions with high efficiencies. The radical adduct with the olefin produced in the reaction was found to undergo two divergent reactions, and the mechanistic insights into this process were investigated in detail. Our study demonstrates a promising strategy in expanding radical SAM chemistry, providing an effective way to access nucleoside-containing compounds by using radical SAM-dependent reactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA