Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Anal Chem ; 90(22): 13200-13206, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30345735

RESUMO

Although the role of 5-methylcytosine has been well studied, the biological role of 5-hydroxymethylcytosine still remains unclear because of the limited methods available for single-base detection of 5-hydroxymethylcytosine (5hmC). Here, we present mirror bisulfite sequencing for 5hmC detection at a single CpG site by synthesizing a DNA strand to mirror the parental strand. This semiconservative duplex is sequentially treated with ß-glucosyltransferase and M.SssI methylase. The glucosyl-5hmCpG in the parental strand inhibits methylation of the mirroring CpG site, and after bisulfite conversion, a thymine in the mirroring strand indicates a 5hmCpG site in the parental strand, whereas a cytosine indicates a non-5hmC site. Using this method, the 5hmC levels of various human tissues and paired liver tissues were mapped genomewide.


Assuntos
5-Metilcitosina/análogos & derivados , DNA/química , Análise de Sequência de DNA/métodos , Sulfitos/química , 5-Metilcitosina/análise , Sequência de Bases , DNA-Citosina Metilases/química , Biblioteca Gênica , Glucosiltransferases/química , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
2.
Genomics ; 104(5): 368-75, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25218799

RESUMO

We developed a novel approach, J-binding protein 1 sequencing (JBP1-seq), that combines the benefits of an improved recombinant JBP1 protein, Nextera-based library construction, and next-generation sequencing (NGS) for genome-wide profiling of 5-hydroxymethylcytosine (5hmC). Compared with the original JBP1, this new recombinant JBP1 was biotinylated in vivo and conjugated to magnetic beads via biotin-streptavidin interactions. These modifications allowed a more efficient and consistent pull-down of ß-glucosyl-5-hydroxymethylcytosine (ß-glu-5hmC), and sequence-ready libraries can be generated within 4.5h from DNA inputs as low as 50ng. 5hmC enrichment of human brain DNA using the new JBP1 resulted in over 25,000 peaks called, which is significantly higher than the 4003 peaks enriched using the old JBP1. Comparison of the technical duplicates and validations with other platforms indicated the results are reproducible and reliable. Thus, JBP1-seq provides a fast, efficient, and cost-effective method for accurate 5hmC genome-wide profiling.


Assuntos
Citosina/análogos & derivados , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Proteína-Arginina N-Metiltransferases/metabolismo , Análise de Sequência de DNA/métodos , 5-Metilcitosina/análogos & derivados , Encéfalo/metabolismo , Citosina/análise , Citosina/metabolismo , Metilação de DNA , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala/economia , Humanos , Fenômenos Magnéticos , Proteína-Arginina N-Metiltransferases/química , Proteína-Arginina N-Metiltransferases/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Análise de Sequência de DNA/economia
3.
RNA Biol ; 10(6): 1003-8, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23595112

RESUMO

Post-synthetic modifications of nucleic acids have long been known to affect their functional and structural properties. For instance, numerous different chemical modifications modulate the structural organization, stability or translation efficiency of tRNAs and rRNAs. In contrast, little is known about modifications of poly(A)RNAs. Here, we demonstrate for the first time that the two well-studied regulatory long non-coding RNAs HOTAIR and XIST are targets of site-specific cytosine methylation. In both XIST and HOTAIR, we found methylated cytosines located within or near functionally important regions that are known to mediate interaction with chromatin-associated protein complexes. We show that cytosine methylation in the XIST A structure strongly affects binding to the chromatin-modifying complex PRC2 in vitro. These results suggest that cytosine methylation may serve as a general strategy to regulate the function of long non-coding RNAs.


Assuntos
Citosina/metabolismo , RNA Longo não Codificante/química , RNA Longo não Codificante/metabolismo , Animais , Sequência de Bases , Linhagem Celular Tumoral , Cromatina/metabolismo , Feminino , Células HEK293 , Humanos , Metilação , Camundongos , Dados de Sequência Molecular , Proteínas do Grupo Polycomb/metabolismo , RNA Longo não Codificante/genética
4.
Clin Epigenetics ; 13(1): 84, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33882992

RESUMO

BACKGROUND: Bladder cancer (BC) is the 5th most common cancer in the USA. Non-muscle invasive bladder cancer represents about 70% of all cases and has generally a favorable outcome. However, recurrence rates as high as 60 to 70% and progression rates of 10 to 20% necessitate intensive surveillance with cystoscopy. The invasiveness and high cost of cystoscopy poses significant burden on BC patients as well as on the healthcare system. In this study we test the feasibility of a simple, sensitive, and non-invasive detection of BC using Bladder CARE test in urine samples. RESULTS: Urine from 136 healthy and 77 BC subjects was collected using the at-home Bladder CARE Urine Collection Kit and analyzed with Bladder CARE test. The test measures the methylation level of three BC-specific biomarkers and two internal controls using methylation-sensitive restriction enzymes coupled with qPCR. Bladder CARE showed an overall sensitivity of 93.5%, a specificity of 92.6%, and a PPV and NPV of 87.8% and 96.2%, respectively. Bladder CARE has an LOD as low as 0.046%, which equates to detecting 1 cancer cell for every 2,200 cells analyzed. We also provided evidence that bisulfite-free methods to assess DNA methylation, like Bladder CARE, are advantageous compared to conventional methods that rely on bisulfite conversion of the DNA. CONCLUSION: Highly sensitive detection of BC in urine samples is possible using Bladder CARE. The low LOD of the test and the measurement of epigenetic biomarkers make Bladder CARE a good candidate for the early detection of BC and possibly for the routine screening and surveillance of BC patients. Bladder CARE and the at-home urine sample collection system have the potential to (1) reduce unnecessary invasive testing for BC (2) reduce the burden of surveillance on patients and on the healthcare system, (3) improve the detection of early stage BC, and (4) allow physicians to streamline the monitoring of patients.


Assuntos
Metilação de DNA/genética , Epigênese Genética/genética , Epigenômica/métodos , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/urina , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/urina , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Adulto Jovem
5.
Genome Biol ; 18(1): 1, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-28077169

RESUMO

BACKGROUND: Recent work has identified and mapped a range of posttranscriptional modifications in mRNA, including methylation of the N6 and N1 positions in adenine, pseudouridylation, and methylation of carbon 5 in cytosine (m5C). However, knowledge about the prevalence and transcriptome-wide distribution of m5C is still extremely limited; thus, studies in different cell types, tissues, and organisms are needed to gain insight into possible functions of this modification and implications for other regulatory processes. RESULTS: We have carried out an unbiased global analysis of m5C in total and nuclear poly(A) RNA of mouse embryonic stem cells and murine brain. We show that there are intriguing differences in these samples and cell compartments with respect to the degree of methylation, functional classification of methylated transcripts, and position bias within the transcript. Specifically, we observe a pronounced accumulation of m5C sites in the vicinity of the translational start codon, depletion in coding sequences, and mixed patterns of enrichment in the 3' UTR. Degree and pattern of methylation distinguish transcripts modified in both embryonic stem cells and brain from those methylated in either one of the samples. We also analyze potential correlations between m5C and micro RNA target sites, binding sites of RNA binding proteins, and N6-methyladenosine. CONCLUSION: Our study presents the first comprehensive picture of cytosine methylation in the epitranscriptome of pluripotent and differentiated stages in the mouse. These data provide an invaluable resource for future studies of function and biological significance of m5C in mRNA in mammals.


Assuntos
5-Metilcitosina , Encéfalo/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , RNA Mensageiro/genética , 5-Metilcitosina/química , Animais , Sítios de Ligação , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Metilação , Camundongos , MicroRNAs/genética , Motivos de Nucleotídeos , Especificidade de Órgãos/genética , Ligação Proteica , Interferência de RNA , RNA Mensageiro/química , Proteínas de Ligação a RNA/metabolismo , Análise de Sequência de RNA , Transcriptoma
6.
Sens Actuators B Chem ; 113(1): 281-289, 2006 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-32288235

RESUMO

In this investigation we report on the influence of volumetric flow rate, flow velocity, complementary DNA concentration, height of a microfluidic flow channel and time on DNA hybridization kinetics. A syringe pump was used to drive Cy3-labeled target DNA through a polydimethylsiloxane (PDMS) microfluidic flow channel to hybridize with immobilized DNA from the West Nile Virus. We demonstrate that a reduction of channel height, while keeping a fixed volumetric flow rate or a fixed flow velocity, enhances mass transport of target DNA to the capture probes. Compared to a passive hybridization, the DNA hybridization in the microfluidic flow channel generates higher fluorescence intensities for lower concentration of target DNA during the same fixed period of time. Within a fixed 2 min time period the fastest DNA hybridization at a 50 pM concentration of target DNA is achieved with a continuous flow of target DNA at the highest flow rate and the lowest channel height.

7.
Exp Biol Med (Maywood) ; 229(8): 843-9, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15337840

RESUMO

The relationship between oxidative stress and neuronal cell death has been suggested for many years. To understand the influence of oxidative stress on neuronal cell death, we investigated the influence of oxidative stress on DEV cells, a human glial cell line. Using enterovirus infection and/or malnutrition to induce oxidative stress, our results demonstrate that those stressors severely influence the antioxidant defense system in DEV cells. Although the expression of mitochondrial manganese superoxide dismutase (MnSOD) in DEV cells was significantly increased in acute infection with viral and nutritional stress, in persistent infection and nutritional stress, the expression of the MnSOD was drastically downregulated. We believe that this downregulation of MnSOD expression in the chronic stress model is due to repression of antioxidant defense. The downregulation of the MnSOD expression may lead to an increase of free-radical production and thus explain why the cells in the chronic stress model were more vulnerable to other oxidative stress influences. The vulnerability of DEV cells to additional stress factors resulted in progressive cell death, which may be analogous to the cell death in neurodegenerative diseases.


Assuntos
Echovirus 6 Humano/patogenicidade , Enterovirus/patogenicidade , Mitocôndrias/enzimologia , Neuroglia/citologia , Estresse Oxidativo/fisiologia , Superóxido Dismutase/genética , Astrócitos/citologia , Diferenciação Celular , Divisão Celular , Linhagem Celular , Humanos , Cinética , Neuroglia/virologia , Fenômenos Fisiológicos da Nutrição/fisiologia
8.
Genome Biol ; 15(9): 456, 2014 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-25248841

RESUMO

Current methods for genomic mapping of 5-hydroxymethylcytosine (5hmC) have been limited by either costly sequencing depth, high DNA input, or lack of single-base resolution. We present an approach called Reduced Representation 5-Hydroxymethylcytosine Profiling (RRHP) to map 5hmC sites at single-base resolution by exploiting the use of beta-glucosyltransferase to inhibit enzymatic digestion at the junction where adapters are ligated to a genomic library. Therefore, only library fragments presenting glucosylated 5hmC residues at the junction are sequenced. RRHP can detect sites with low 5hmC abundance, and when combined with RRBS data, 5-methylcytosine and 5-hydroxymethylcytosine can be compared at a specific site.


Assuntos
Citosina/análogos & derivados , 5-Metilcitosina/análogos & derivados , Citosina/fisiologia , Metilação de DNA , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neoplasias Hepáticas/genética , Anotação de Sequência Molecular , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA