Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(16): 7176-7185, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38606801

RESUMO

Hydrous ferric arsenate (HFA) is a common thermodynamically metastable phase in acid mine drainage (AMD). However, little is known regarding the structural forms and transformation mechanism of HFA. We investigated the local atomic structures and the crystallization transformation of HFA at various Fe(III)/As(V) ratios (2, 1, 0.5, 0.33, and 0.25) in acidic solutions (pH 1.2 and 1.8). The results show that the Fe(III)/As(V) in HFA decreases with decreasing initial Fe(III)/As(V) at acidic pHs. The degree of protonation of As(V) in HFA increases with increasing As(V) concentrations. The Fe K-edge extended X-ray absorption fine structure and X-ray absorption near-edge structure results reveal that each FeO6 is linked to more than two AsO4 in HFA precipitated at Fe(III)/As(V) < 1. Furthermore, the formation of scorodite (FeAsO4·2H2O) is greatly accelerated by decreasing the initial Fe(III)/As(V). The release of As(V) from HFA is observed during its crystallization transformation process to scorodite at Fe(III)/As(V) < 1, which is different from that at Fe(III)/As(V) ≥ 1. Scanning electron microscopy results show that Oswald ripening is responsible for the coarsening of scorodite regardless of the initial Fe(III)/As(V) or pH. Moreover, the formation of crystalline ferric dihydrogen arsenate as an intermediate phase at Fe(III)/As(V) < 1 is responsible for the enhanced transformation rate from HFA to scorodite. This work provides new insights into the local atomic structure of HFA and its crystallization transformation that may occur in AMD and has important implications for arsenic geochemical cycling.

2.
Environ Res ; 245: 118030, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38151148

RESUMO

Understanding how abundant (AT) and rare (RT) taxa adapt to diverse environmental stresses is vital for assessing ecological processes, yet remains understudied. We collected sediment samples from Liaoning Province, China, representing rivers (upstream of wastewater outlet), estuaries (wastewater outlets), and Jinzhou Bay (downstream of wastewater outlets), to comprehensively evaluate AT and RT adaptation strategies to both natural stressors (salinity stress) and anthropogenic stressors (metal stress). Generally, RT displayed higher α- and ß-diversities and taxonomic groups compared to AT. Metal and salinity stresses induced distinct α-diversity responses in AT and RT, while ß-diversity remained consistent. Both subcommunities were dominated by Woeseia genus. Metal stress emerged as the primary driver of diversity and compositional discrepancies in AT and RT. Notably, AT responded more sensitively to salinity stress than RT. Stress increased topological parameters in the biotic network of AT subcommunities while decreasing values in RT subcommunities, concurrently loosening interactions of AT with other taxa and strengthening interactions of RT with others in biotic networks. RT generally exhibited greater diversity of metal resistance genes compared to AT. Greater numbers of genes related to salinity tolerance was observed for the RT than for AT. Compared to AT, RT demonstrated higher diversity of metal resistance genes and a greater abundance of genes associated with salinity tolerance. Additionally, deterministic processes governed AT community assembly, reinforced by salinity stress. However, the opposite trend was observed in the RT, where the importance of stochastic process gradually increased with metal stresses. The study is centered on exploring the adaptation strategies of both AT and RT to environmental stress. It underscores the importance of future research incorporating diverse ecosystems and a range of environmental stressors to draw broader and more reliable conclusions. This comprehensive approach is essential for gaining a thorough understanding of the adaptive mechanisms employed by these microorganisms.


Assuntos
Baías , Ecossistema , Águas Residuárias , Bactérias , Estresse Salino , Salinidade
3.
Angew Chem Int Ed Engl ; 63(21): e202401051, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38469954

RESUMO

Sodium-ion batteries (SIBs) present a promising avenue for next-generation grid-scale energy storage. However, realizing all-climate SIBs operating across a wide temperature range remains a challenge due to the poor electrolyte conductivity and instable electrode interphases at extreme temperatures. Here, we propose a comprehensively balanced electrolyte by pairing carbonates with a low-freezing-point and low-polarity ethyl propionate solvent which enhances ion diffusion and Na+-desolvation kinetics at sub-zero temperatures. Furthermore, the electrolyte leverages a combinatorial borate- and nitrile-based additive strategy to facilitate uniform and inorganic-rich electrode interphases, ensuring excellent rate performance and cycle stability over a wide temperature range from -45 °C to 60 °C. Notably, the Na||sodium vanadyl phosphate cell delivers a remarkable capacity of 105 mAh g-1 with a high rate of 2 C at -25 °C. In addition, the cells exhibit excellent cycling stability over a wide temperature range, maintaining a high capacity retention of 84.7 % over 3,000 cycles at 60 °C and of 95.1 % at -25 °C over 500 cycles. The full cell also exhibits impressive cycling performance over a wide temperature range. This study highlights the critical role of electrolyte and interphase engineering for enabling SIBs that function optimally under diverse and extreme climatic environments.

4.
J Environ Sci (China) ; 124: 31-41, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36182140

RESUMO

An advanced cost-saving method of removal of high-As(III) from SO4(-II)-rich metallurgical wastewater has been developed by diluting the SO4(-II) content with As(III)-Cl(-I)-rich metallurgical wastewater and then by the direct precipitation of As(III) with Fe(III) at pH 2.3. As(III) removal at various SO4(-II)/Cl(-I) molar ratios and temperatures was investigated. The results showed that 65.2‒98.2% of As(III) immobilization into solids occurred at the SO4(-II)/Cl(-I) molar ratios of 1:1‒32 and 15‒60 °C in 3 days, which were far higher than those in aqueous sole SO4(-II) or Cl(-I) media at the equimolar SO4(-II) or Cl(-I) and the same temperature. SO4(-II)/Cl(-I) molar ratio of 1:4 and 25 °C were optimal conditions to reach the As removal maximum. Mixed aqueous SO4(-II) and Cl(-I) played a synergetic role in the main tooeleite formation together with (Cl(-I)-free) ferric arsenite hydroxychloride (FAHC) involving the substitution of AsO33- for Cl(-I) for enhanced As fixation. The competitive complexation among FeH2AsO32+, FeSO4+ and FeCl2+ complexes was the main mechanism for the maximum As(III) precipitation at the SO4(-II)/Cl(-I) molar ratio of 1:4. Low As(III) immobilization at high temperature with increased Fe(III) hydrolysis was due to the formation of As(III)-bearing ferrihydrite with the relatively high Fe/As molar ratio at acidic pH.


Assuntos
Arsenitos , Arsênio , Compostos Férricos/química , Concentração de Íons de Hidrogênio , Ferro , Águas Residuárias
5.
Nanotechnology ; 32(19): 192002, 2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-33498035

RESUMO

Lithium/sulfur (Li/S) batteries have emerged as one of the most promising next-generation energy storage systems with advantages of high theoretical energy density, low cost and environmental friendliness. However, problems regarding to severe shuttle effect of soluble polysulfide, poor electronic/ionic conductor of solid charged/discharged products (S8 and Li2S), and fatal swell of volume along with the growth of Li dendrites greatly deteriorate the sulfur utilization and capacity retention during extended charge-discharge cycles. With advantages of high nitrogen content, lithiophilic modulation and tunable charge density and charge transfer, carbon nitride (g-C3N4) has played a positive role in restricting the shuttle effects and dendrite formation. This minireview mainly discusses these research achievements of g-C3N4 in Li/S batteries, aiming to provide a basic understanding and direct guidance for further research and development of functionalized g-C3N4 materials in electrical energy storage. The two-dimensional (2D) structure of g-C3N4 with abundant hierarchical pores improves its accommodation capacity for sulfur by effectively confining the lithium polysulfides (LiPSs) into the pores, and provides favorable channels for ion diffusion. The rich nitrogen and carbon defects further offer more active sites for strongly adsorbing LiPSs and bridge electron transfer pathway at atomic scale for catalytic reactions to accelerate redox kinetics of Li/S conversion chemistry. Moreover, the features of lithiophilic wettability, high adsorption energy and densely distributed lithiophilic N of g-C3N4 provide a large number of adhesive sites for lithium cation (Li+) and disperse the nucleation sites to enable uniform nucleation and deposition of Li on the anode surface and to suppress formation and growth of Li dendrites. Finally, the g-C3N4 also effectively regulates the wettability between Li anode and solid inorganic electrolyte, and reduces the crystallinity of solid polymer electrolyte to enhance the Li+ migration ability and ionic conductivity.

6.
Nanotechnology ; 32(18): 185401, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33440357

RESUMO

Chemical fabrication of a nanocomposite structure for electrode materials to regulate the ion diffusion channels and charge transfer resistances and Faradaic active sites is a versatile strategy towards building a high-performance supercapacitor. Here, a new ternary flower-sphere-like nanocomposite MnO2-graphite (MG)/reduced graphene oxide (RGO) was designed using the RGO as a coating for the MG. MnO2-graphite (MnO2-4) was obtained by KMnO4 oxidizing the pretreated graphite in an acidic medium (pH = 4). The GO coating was finally reduced by the NaBH4 to prepare the ternary nanocomposite MG. The microstructures and pore sizes were investigated by x-ray diffraction, scanning electron microscopy, thermogravimetric analysis, and nitrogen adsorption/desorption. The electrochemical properties of MG were systematically investigated by the cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy in Na2SO4 solution. The MG as an electrode material for supercapacitor exhibits a specific capacitance of 478.2 and 454.6 F g-1 at a current density of 1.0 and 10.0 A g-1, respectively. In addition, the capacitance retention was 90% after 8,000 cycles. The ternary nanocomposite enhanced electrochemical performance originates from the specific flower-sphere-like morphology and coating architecture bringing higher specific surface area and lower charge transfer resistance (Rct).

7.
Nanotechnology ; 32(31)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33735853

RESUMO

The synthesis of a sustainable material through carbon nitride (C3N4) chemically grafted on waste-derived carbon including carbonizing coals (PM), melamine-urea-formaldehyde resins (MUF-C-1100), and luffa cylindrical sponges (SG), respectively, and its application as sulfur cathode in lithium-sulfur (Li-S) batteries were demonstrated. The Li-S cell assembled by the sulfur (S) cathode with component from C3N4grafted coal-derived carbon (PM-CN) possesses a specific capacity of 1269.8 mA h g-1at 0.05 C. At 1 C, the initial specific capacity of PM cathode is only 380.0 mA h g-1, comparable to the PM-CN5 cathode of 681.9 mA h g-1, and PM-CN10 cathode of 580.7 mA h g-1, respectively. And, PM-CN 5 cathode presents the capacity retention of 75.9% with a coulomb efficiency (C.E.) of 97.3% after 200 cycles. The MUF-CN cathode gives a specific capacity of 1335.6 mA h g-1at 0.05 C, and the capacity retention of 66.7% with a C. E. of 93.6% after 300 cycles at 0.5 C. The SG-CN cathode had a specific capacity of 953.9 mA h g-1at 0.05 C, and capacity retention of 95.1% with a C. E. of 98.2% after 125 cycles at 1 C. The remarkable improved performances were mainly ascribed to the sustainable materials as S host with micro-meso pore and C3N4structure providing the strong affinity N sites to lithium polysulfides (LiPSs). This work provides an attractive approach for the preparation of sustainable materials by rational design of grafting C3N4to waste-derived carbons with functions as S cathode materials for high-performance Li-S batteries.

8.
Artigo em Inglês | MEDLINE | ID: mdl-34870539

RESUMO

Natural organic matter (NOM) has been considered a critical substance in the transport and transformation of arsenic. NOM is a complex mixture of multifunctional organic components with a wide molecular weight (MW) distribution, and it is necessary to understand the complexation of arsenic with MW-dependent NOM fractions. In this study, humic acid (HA) was chosen as the representative fraction of NOM to investigate the complexation mechanism with arsenic. The bulk HA sample was fractionated to five fractions by ultrafiltration technology, and the complexing property of HA fractions with arsenic was analyzed by the dialysis method. We observed that the acidic and neutral conditions favor the complexation of HA fractions with arsenate (As(V)). The HA fractions with molecular weight > 100 kDa, 1-10 kDa, and <1 kDa have the stronger complexing capacity of As(V) than the other HA fractions. The bound As(V) percentage was positively associated with carboxyl content, phenolic content, and especially total acidity. A two-site ligand-binding model can describe the complexing capacity of arsenic onto HA fractions. The results can provide some fundamental information about the complexation of arsenic with MW-dependent HA fractions quantitatively.


Assuntos
Arsênio , Substâncias Húmicas , Arseniatos , Arsênio/química , Substâncias Húmicas/análise , Peso Molecular , Água
9.
Bull Environ Contam Toxicol ; 106(1): 24-32, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32506254

RESUMO

A novel model was developed to estimate heavy metal flux at regional scale by using the Revised Universal Soil Loss Equation (RUSLE) to estimate soil erosion. This model was then used to estimate the fluxes of heavy metals including Zn, Cu, Cr, Ni, Cd, and As in three mono-lithologic regions in upper Pearl River Basin including carbonate rock (CR) basin, black shale (BS) basin, and basalt (BT) basin. Results show that the total annual erosions of the watershed were 8.56 × 105 t a -1, 3.26 × 106 t a-1, and 5.09 × 105 t a-1 in CR, BT, and BS basins, respectively. The heavy metal flux was lowest for Cd (0.87 kg km-2 a-1, 0.46 kg km-2 a-1, and 1.07 kg km-2 a-1 in CR, BS, and BT basins, respectively). The heavy metal flux was highest for Zn in CR basin (16.29 kg km-2 a-1), Cr in BS basin (27.25 kg km-2 a-1) and Cu in BT basin (259.59 kg km-2 a-1). These findings have important implication to understand transport and distribution of heavy metals in the Pearl River Basin, and make regulations for controlling of non-point source heavy metal pollution.


Assuntos
Metais Pesados , Poluentes do Solo , China , Monitoramento Ambiental , Metais Pesados/análise , Medição de Risco , Rios , Solo , Poluentes do Solo/análise
10.
Environ Sci Technol ; 54(6): 3169-3180, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32083476

RESUMO

Gypsum is the most common sulfate mineral on Earth's surface and is the dominant solid byproduct in a wide variety of mining and industrial processes, thus representing a major source for heavy metal(loid) contamination, including selenium. Gypsum crystals grown from the gel diffusion technique in 0.02 M Na2SeO4 solution at pH 7.5 and 0.02 M Na2SeO3 solutions at pH 7.5 and 9.0 contain 828, 5198, and 5955 ppm Se, respectively. Synchrotron Se K-edge X-ray absorption spectroscopic analyses show that selenite and selenate are the dominant species in Se4+- and Se6+-doped gypsum, respectively. The single-crystal EPR spectra of Se4+- and Se6+-doped gypsum after gamma-ray irradiation reveal five selenium-centered oxyradicals: SeO2-(I), SeO2-(II), SeO2-(III), SeO3-, and HSeO42-. The former three radicals provide unequivocal evidence for the substitution of their paramagnetic precursor SeO32- for SO42- in the gypsum structure, while the latter two confirm the replacement of SeO42- for SO42-. These results demonstrate that gypsum has a significant capacity for sequestrating both selenite and selenate in the structure but has a marked preference for the former, thus confirming important controls on the mobility and bioavailability of selenium oxyanions and pointing to optimal applications of gypsum for remediating selenium contamination under neutral to alkaline conditions.


Assuntos
Compostos de Selênio , Selênio , Sulfato de Cálcio , Espectroscopia de Ressonância de Spin Eletrônica , Ácido Selênico , Ácido Selenioso , Selenito de Sódio , Síncrotrons , Espectroscopia por Absorção de Raios X
11.
J Environ Sci (China) ; 94: 147-160, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32563479

RESUMO

The ubiquitous arsenic in groundwater poses a great risk to human health due to its environmental toxicity and carcinogenicity. In the present work, a new adsorbent, δ-MnO2 modified activated carbon, was prepared, and its performance for the uptake of arsenate and arsenite species from aqueous solutions was investigated by batch experiments. Various techniques, including FESEM-EDX, p-XRD, XPS and BET surface area analysis, were employed to characterize the properties of the adsorbent and the arsenic adsorption mechanisms. The results showed that δ-MnO2 covered on the surface and padded in the pores of the activated carbon. Adsorption kinetic studies revealed that approximately 90.1% and 76.8% of As(III) and As(V), respectively, were removed by the adsorbent in the first 9 hr, and adsorption achieved equilibrium within 48 hr. The maximum adsorption capacities of As(V) and As(III) at pH 4.0 calculated from Langmuir adsorption isotherms were 13.30 and 12.56 mg/g, respectively. The effect of pH on As(V) and As(III) removal was similar, and the removal efficiency significantly reduced with the increase of solution pH. Arsenite oxidation and adsorption kinetics showed that the As(V) concentration in solution due to As(III) oxidation and reductive dissolution of MnO2 increased rapidly during the first 12 min, and then gradually decreased. Based on the XPS analysis, nearly 93.3% of As(III) had been oxidized to As(V) on the adsorbent surface and around 38.9% of Mn(IV) had been reduced to Mn(II) after As(III) adsorption. This approach provides a possible method for the purification of arsenic-contaminated groundwater.


Assuntos
Arsênio , Poluentes Químicos da Água/análise , Purificação da Água , Adsorção , Carvão Vegetal , Concentração de Íons de Hidrogênio , Cinética , Compostos de Manganês , Óxidos , Água
12.
J Environ Sci (China) ; 90: 205-215, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32081317

RESUMO

Tooeleite (Fe6(AsO3)4SO4(OH)4·4H2O) is widely precipitated for direct As(III) removal from sulfate-rich industrial effluents. However, whether or not Fe(III)-As(III)-Cl(-I) precipitate is produced in chloridizing leaching media for As immobilization is almost unknown. This work founded the existence of ferric arsenite (hydroxy)chloride as a new mineral for As(III) removal. Its chemical composition and solid characterization were subsequently studied by using scanning electron microscope with an energy dispersive spectrometer (SEM-EDS), X-ray diffraction (XRD), infrared (FT-IR), Raman spectroscopy and thermogravimetric (TG) curve. The results showed the formation of a yellow precipitate after 3-days reaction of Fe(III)/As(III) with molar ratio ≈ 1.7 in chloride solution at pH 2.3 neutralized with NaOH. Compared with tooeleite, chemical analysis and solid characterization indicated that Cl(-I) replaces SO4(-II) producing ferric arsenite hydroxychloride with formula Fe5(AsO3)3Cl2(OH)4·5H2O. This new plate shaped solid showed better crytallinity than tooeleite, although it has similar morphology and characteristic bands to tooeleite. The FT-IR bands at 628, 964 cm-1 and the Raman bands at 448, 610, 961 cm-1 were assigned to Fe-O or As(III)-O-Fe or As(III)-O bending/stretching vibration, indicating that both arsenite and chloride substituted for the position of sulfate for ferric arsenite hydroxychloride produced due to the lack of the SO42- vibrations. Cl-(I) also contributed to increase As removal efficiency in aqueous sulfate media under acidic pH conditions via the probable formation of sulfate-chloride ferric arsenite.


Assuntos
Arsênio , Arsenitos , Compostos Férricos , Modelos Químicos , Espectroscopia de Infravermelho com Transformada de Fourier , Sulfatos
13.
Cell Mol Biol Lett ; 24: 38, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31182966

RESUMO

BACKGROUND: Exploration of the genes with abnormal expression during the development of breast cancer is essential to provide a deeper understanding of the mechanisms involved. Transcriptome sequencing and bioinformatics analysis of invasive ductal carcinoma and paracancerous tissues from the same patient were performed to identify the key genes and signaling pathways related to breast cancer development. METHODS: Samples of breast tumor tissue and paracancerous breast tissue were obtained from 6 patients. Sequencing used the Illumina HiSeq platform. All. Only perfectly matched clean reads were mapped to the reference genome database, further analyzed and annotated based on the reference genome information. Differentially expressed genes (DEGs) were identified using the DESeq R package (1.10.1) and DEGSeq R package (1.12.0). Using KOBAS software to execute the KEGG bioinformatics analyses, enriched signaling pathways of DEGs involved in the occurrence of breast cancer were determined. Subsequently, quantitative real time PCR was used to verify the accuracy of the expression profile of key DEGs from the RNA-seq result and to explore the expression patterns of novel cancer-related genes on 8 different clinical individuals. RESULTS: The transcriptomic sequencing results showed 937 DEGs, including 487 upregulated and 450 downregulated genes in the breast cancer specimens. Further quantitative gene expression analysis was performed and captured 252 DEGs (201 downregulated and 51 upregulated) that showed the same differential expression pattern in all libraries. Finally, 6 upregulated DEGs (CST2, DRP2, CLEC5A, SCD, KIAA1211, DTL) and 6 downregulated DEGs (STAC2, BTNL9, CA4, CD300LG, GPIHBP1 and PIGR), were confirmed in a quantitative real time PCR comparison of breast cancer and paracancerous breast tissues from 8 clinical specimens. KEGG analysis revealed various pathway changes, including 20 upregulated and 21 downregulated gene enrichment pathways. The extracellular matrix-receptor (ECM-receptor) interaction pathway was the most enriched pathway: all genes in this pathway were DEGs, including the THBS family, collagen and fibronectin. These DEGs and the ECM-receptor interaction pathway may perform important roles in breast cancer. CONCLUSION: Several potential breast cancer-related genes and pathways were captured, including 7 novel upregulated genes and 76 novel downregulated genes that were not found in other studies. These genes are related to cell proliferation, movement and adhesion. They may be important for research into breast cancer mechanisms, particularly CST2 and CA4. A key signaling pathway, the ECM-receptor interaction signal pathway, was also identified as possibly involved in the development of breast cancer.


Assuntos
Neoplasias da Mama/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Receptores de Superfície Celular/metabolismo , Transdução de Sinais/genética , Regulação para Baixo/genética , Feminino , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Reprodutibilidade dos Testes , Análise de Sequência de RNA , Transcriptoma/genética , Regulação para Cima/genética
14.
J Environ Manage ; 238: 484-498, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30877941

RESUMO

Water quality is declining worldwide and an increasing number of waterbodies lose their ecological function due to human population growth and climate change. Constructed floating wetlands (CFWs) are a promising ecological engineering tool for restoring waterbodies. The functionality of CFWs has been studied in-situ, in mesocosms and in the laboratory, but a systematic review of the success of in situ applications to improve ecosystem health is missing to date. This review summarises the pollutant dynamics in the presence of CFWs and quantifies removal efficiencies for major pollutants with a focus on in situ applications, including studies that have only been published in the Chinese scientific literature. We find that well designed CFWs successfully decrease pollutant concentrations and improve the health of the ecosystem, shown by lower algae biomass and more diverse fish, algae and invertebrate communities. However, simply extrapolating pollutant removal efficiencies from small-scale experiments will lead to overestimating the removal capacity of nitrogen, phosphorus and organic matter of in situ applications. We show that predicted climate change and eutrophication scenarios will likely increase the efficiency rate of CFWs, mainly due to increased growth and pollutant uptake rates at higher temperatures. However, an increase in rainfall intensity could lead to a lower efficiency of CFWs due to shorter hydraulic retention times and more pollutants being present in the particulate, not the dissolved form. Finally, we develop a framework that will assist water resource managers to design CFWs for specific management purposes. Our review clearly highlights the need of more detailed in situ studies, particularly in terms of understanding the short- and long-term ecosystem response to CFWs under different climate change scenarios.


Assuntos
Ecossistema , Áreas Alagadas , Animais , Eutrofização , Humanos , Nitrogênio , Fósforo
15.
Bull Environ Contam Toxicol ; 103(1): 64-68, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31165189

RESUMO

The molecular-level surface complexation structure of Ca2+ at the goethite/water interface remains unclear. We investigated the sorption of Ca2+ on the surfaces of goethite using classical molecular dynamics (MD) simulations and Ca K-edge X-ray absorption near edge structure (XANES) spectroscopy. The XANES results showed that Ca2+ was sequestered by goethite dominantly via sorption at pH ≤ 9, whereas the Ca(OH)2 surface precipitate formed at pH 10 for an initial Ca2+ concentration of 2 mM. The MD simulations showed that Ca2+ dominantly absorbed on the (100) and (110) surfaces of goethite via bidentate binuclear complexation by forming ≡(Fe-OH)2Ca2+·5H2O species, whereas little Ca2+ adsorbed on the (021) surface. The theoretical Ca K-edge XANES spectrum calculations gave a mean Ca-O interatomic distance of 2.34 Å (2.23-2.55 Å) and a Ca-Fe interatomic distance of 3.80 Å (3.79-3.81 Å) at goethite/water interface. Our results may shed some light on the geochemical cycling of calcium and other related cations and anions.


Assuntos
Cálcio/química , Simulação de Dinâmica Molecular , Adsorção , Compostos de Ferro/química , Minerais/química , Modelos Químicos , Estrutura Molecular , Água/química , Espectroscopia por Absorção de Raios X
16.
J Environ Sci (China) ; 84: 29-41, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31284914

RESUMO

It is well known that calcium arsenates may not be a good choice for arsenic removal and immobilization in hydrometallurgical practices. However, they are still produced at some plants in the world due to various reasons. Furthermore, calcium arsenates can also naturally precipitate under some specific environments. However, the transformation process of poorly crystalline calcium arsenates (PCCA) and the stability of these samples under atmospheric CO2 are not yet well understood. This work investigated the transformation process of PCCA produced by using different neutralization reagents (CaO vs. NaOH) with various Ca/As molar ratios at pH 7-12 in the presence of atmospheric CO2. After aging at room temperature for a period of time, for samples neutralized with NaOH and precipitated at pH 10 and 12, release of arsenic back into the liquid phase occurred. In contrast, for the samples precipitated at pH 8, the aqueous concentration of arsenic was observed to decrease. XRD, Raman, and SEM results suggested that the formation of various types of crystalline calcium carbonates and/or calcium arsenates controls the arsenic behavior. Moreover, the application of lime may enhance the stability of the generated PCCA. However, no matter what neutralization reagent is used, the stability of the generated PCCA is still of concern.


Assuntos
Arseniatos/química , Arsênio/análise , Compostos de Cálcio/química , Precipitação Química
17.
J Environ Sci (China) ; 52: 190-196, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28254038

RESUMO

Presented here is the influence of membrane pore size and dissolved organic matters on the diffusion coefficient (D) of aqueous arsenate, investigated by the diffusion cell method for the first time. The pH-dependent diffusion coefficient of arsenate was determined and compared with values from previous studies; the coefficient was found to decrease with increasing pH, showing the validity of our novel diffusion cell method. The D value increased dramatically as a function of membrane pore size at small pore sizes, and then increased slowly at pore sizes larger than 2.0µm. Using the ExpAssoc model, the maximum D value was determined to be 11.2565×10-6cm2/sec. The presence of dissolved organic matters led to a dramatic increase of the D of arsenate, which could be attributed to electrostatic effects and ionic effects of salts. These results improve the understanding of the diffusion behavior of arsenate, especially the important role of various environmental parameters in the study and prediction of the migration of arsenate in aquatic water systems.


Assuntos
Arseniatos/química , Modelos Químicos , Poluentes Químicos da Água/química , Arseniatos/análise , Difusão , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/análise
18.
Environ Sci Technol ; 50(22): 12114-12121, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27771951

RESUMO

Hydrous ferric arsenate (HFA) is an important arsenic-bearing precipitate in the mining-impacted environment and hydrometallurgical tailings. However, there is no agreement on its local atomic structure. The local structure of HFA was reprobed by employing a full-potential multiple scattering (FPMS) analysis, density functional theory (DFT) calculations, and vibrational spectroscopy. The FPMS simulations indicated that the coordination number of the As-Fe, Fe-As, or both in HFA was approximately two. The DFT calculations constructed a structure of HFA with the formula of Fe(HAsO4)x(H2AsO4)1-x(OH)y·zH2O. The presence of protonated arsenate in HFA was also evidenced by vibrational spectroscopy. The As and Fe K-edge X-ray absorption near-edge structure spectra of HFA were accurately reproduced by FPMS simulations using the chain structure, which was also a reasonable model for extended X-Ray absorption fine structure fitting. The FPMS refinements indicated that the interatomic Fe-Fe distance was approximately 5.2 Å, consistent with that obtained by Mikutta et al. (Environ. Sci. Technol. 2013, 47 (7), 3122-3131) using wavelet analysis. All of the results suggested that HFA was more likely to occur as a chain with AsO4 tetrahedra and FeO6 octahedra connecting alternately in an isolated bidentate-type fashion. This finding is of significance for understanding the fate of arsenic and the formation of ferric arsenate minerals in an acidic environment.


Assuntos
Arseniatos/química , Compostos Férricos/química , Arsênio , Análise Espectral , Espectroscopia por Absorção de Raios X , Raios X
19.
Environ Sci Technol ; 50(23): 12650-12659, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27797497

RESUMO

The role of sulfur cycling in arsenic behavior under reducing conditions is not well-understood in previous investigations. This study provides observations of sulfur and oxygen isotope fractionation in sulfate and evaluation of sulfur cycling-related biogeochemical processes controlling dissolved arsenic groundwater concentrations using multiple isotope approaches. As a typical basin hosting high arsenic groundwater, the western Hetao basin was selected as the study area. Results showed that, along the groundwater flow paths, groundwater δ34SSO4, δ18OSO4, and δ13CDOC increased with increases in arsenic, dissolved iron, hydrogen sulfide and ammonium concentrations, while δ13CDIC decreased with decreasing Eh and sulfate/chloride. Bacterial sulfate reduction (BSR) was responsible for many of these observed changes. The δ34SSO4 indicated that dissolved sulfate was mainly sourced from oxidative weathering of sulfides in upgradient alluvial fans. The high oxygen-sulfur isotope fractionation ratio (0.60) may result from both slow sulfate reduction rates and bacterial disproportionation of sulfur intermediates (BDSI). Data indicate that both the sulfide produced by BSR and the overall BDSI reduce arsenic-bearing iron(III) oxyhydroxides, leading to the release of arsenic into groundwater. These results suggest that sulfur-related biogeochemical processes are important in mobilizing arsenic in aquifer systems.


Assuntos
Arsênio , Enxofre , China , Compostos Férricos , Água Subterrânea , Poluentes Químicos da Água
20.
Int J Gynecol Pathol ; 34(2): 126-31, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25675180

RESUMO

Tumor-to-tumor metastasis is a rare phenomenon. On the basis of our review of international literature, there have been 7 reports of tumor-to-tumor metastasis cases involving ovary neoplasms as the recipient. However, an ovarian granulosa cell tumor has not been reported to be a recipient. Here, we report the first case of gastric signet-ring cell carcinoma metastasis to a bilateral ovarian granulosa cell tumor. Awareness of this phenomenon is important to avoid incorrect diagnoses when encountering unusual morphologic features in ovarian granulosa cell tumors.


Assuntos
Carcinoma de Células em Anel de Sinete/patologia , Tumor de Células da Granulosa/patologia , Metástase Neoplásica/patologia , Neoplasias Primárias Múltiplas/patologia , Neoplasias Gástricas/patologia , Adulto , Feminino , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA