Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Lett ; 49(14): 3902-3905, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39008737

RESUMO

We demonstrate a new non-mydriatic ultra-widefield optical coherence tomography retinal imaging system, designed with custom optics to improve the imaging field of view, lateral resolution, and patient comfort. The key motivation is to address the challenge with conventional systems that require pupillary dilation, adding time, expense, discomfort, and medical risk to the examination of the retina. Our system provides an ultrawide 100° field of view (beam scanning angle at the scanning pivot point) and maintains a lateral resolution of 20 µm on the center. It also allows a generous working distance of 16 mm, 2-3 times longer than existing ultra-widefield OCT imaging systems. This advanced system was able to avoid iris vignetting artifacts without pharmacological dilation and ensure diffraction-limited ultra-widefield imaging under a generalized eye model. This enables a comprehensive evaluation of retina diseases, especially those affecting the peripheral regions.


Assuntos
Retina , Tomografia de Coerência Óptica , Tomografia de Coerência Óptica/métodos , Retina/diagnóstico por imagem , Humanos
2.
Curr Opin Ophthalmol ; 35(3): 252-259, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38205941

RESUMO

PURPOSE OF REVIEW: In this review, we explore the investigational applications of optical coherence tomography (OCT) in retinopathy of prematurity (ROP), the insights they have delivered thus far, and key milestones for its integration into the standard of care. RECENT FINDINGS: While OCT has been widely integrated into clinical management of common retinal diseases, its use in pediatric contexts has been undermined by limitations in ergonomics, image acquisition time, and field of view. Recently, investigational handheld OCT devices have been reported with advancements including ultra-widefield view, noncontact use, and high-speed image capture permitting real-time en face visualization. These developments are compelling for OCT as a more objective alternative with reduced neonatal stress compared to indirect ophthalmoscopy and/or fundus photography as a means of classifying and monitoring ROP. SUMMARY: OCT may become a viable modality in management of ROP. Ongoing innovation surrounding handheld devices should aim to optimize patient comfort and image resolution in the retinal periphery. Future clinical investigations may seek to objectively characterize features of peripheral stage and explore novel biomarkers of disease activity.


Assuntos
Retinopatia da Prematuridade , Recém-Nascido , Humanos , Criança , Retinopatia da Prematuridade/diagnóstico , Tomografia de Coerência Óptica/métodos , Retina , Oftalmoscopia/métodos , Técnicas de Diagnóstico Oftalmológico
3.
Opt Lett ; 48(15): 3921-3924, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37527083

RESUMO

This pilot study reports the development of optical coherence tomography (OCT) split-spectrum amplitude-decorrelation optoretinography (SSADOR) that measures spatially resolved photoreceptor response to light stimuli. Using spectrally multiplexed narrowband OCT, SSADOR improves sensitivity to microscopic changes without the need for cellular resolution or optical phase detection. Therefore, a large field of view (up to 3 × 1 mm2 demonstrated) using conventional OCT instrument design can be achieved, paving the way for clinical translation. SSADOR promises a fast, objective, and quantifiable functional biomarker for photoreceptor damage in the macula.


Assuntos
Tomografia de Coerência Óptica , Tomografia de Coerência Óptica/métodos , Projetos Piloto
4.
Opt Lett ; 46(16): 3833-3836, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34388753

RESUMO

Megahertz-rate optical coherence tomography angiography (OCTA) is highly anticipated as an ultrafast imaging tool in clinical settings. However, shot-noise-limited sensitivity is inevitably reduced in high-speed imaging systems. In this Letter, we present a coherent buffer averaging technique for use with a Fourier-domain mode-locked (FDML) laser to improve OCTA contrast at 1060 nm MHz-rate retinal imaging. Full characterization of spectral variations among the FDML buffers and a numerical correction method are also presented, with the results demonstrating a 10-fold increase in the phase alignment among buffers. Coherent buffer averaging provided better OCTA contrast than the conventional multi-frame averaging approach with a faster acquisition time.


Assuntos
Lasers , Tomografia de Coerência Óptica , Angiografia , Retina
5.
Opt Lett ; 46(23): 5878-5881, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34851913

RESUMO

We demonstrate a handheld swept-source optical coherence tomography (OCT) system with a 400 kHz vertical-cavity surface-emitting laser (VCSEL) light source, a non-contact approach, and an unprecedented single shot 105° field of view (FOV). We also implemented a spiral scanning pattern allowing real-time visualization with improved scanning efficiency. To the best of our knowledge, this is the widest FOV achieved in a portable non-contact OCT retinal imaging system to date. Improvements to the FOV may aid the evaluation of retinal diseases such as retinopathy of prematurity, where important vitreoretinal changes often occur in the peripheral retina.


Assuntos
Doenças Retinianas , Tomografia de Coerência Óptica , Humanos , Recém-Nascido , Lasers , Retina/diagnóstico por imagem
6.
Opt Lett ; 45(9): 2612-2615, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32356829

RESUMO

Sensorless adaptive optics optical coherence tomography (AO-OCT) is a technology to image retinal tissue with high resolution by compensating ocular aberrations without wavefront sensors. In this Letter, a fast and robust hill-climbing algorithm is developed to optimize five Zernike modes in AO-OCT with a numerical aperture between that of conventional AO and commercial OCT systems. The merit function is generated in real time using graphics processing unit while axially tracking the retinal layer of interest. A new method is proposed to estimate the largest achievable field of view for which aberrations are corrected uniformly in sensorless AO-OCT.


Assuntos
Tomografia de Coerência Óptica/métodos , Olho/diagnóstico por imagem , Humanos , Fatores de Tempo
7.
Opt Lett ; 43(20): 5162-5165, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30320845

RESUMO

Optical coherence tomography (OCT) has emerged as a powerful imaging instrument and technology in biomedicine. OCT imaging is predominantly performed using wavelengths in the near infrared; however, visible light (VIS) has been recently employed in OCT systems with encouraging results for high-resolution retinal imaging. Using a broadband supercontinuum VIS source, we present a sensorless adaptive optics (SAO) multimodal imaging system driven by VIS-OCT for volumetric retinal structural imaging, followed by the acquisition of fluorescence emission. The coherence-gated, depth-resolved VIS-OCT images used for image-guided SAO aberration correction enable high-resolution structural and fluorescence imaging.

8.
J Neurosci ; 36(34): 8826-41, 2016 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-27559166

RESUMO

UNLABELLED: In many diseases, expression and ligand-dependent activity of the p75(NTR) receptor can promote pericyte and vascular dysfunction, inflammation, glial activation, and neurodegeneration. Diabetic retinopathy (DR) is characterized by all of these pathological events. However, the mechanisms by which p75(NTR) may be implicated at each stage of DR pathology remain poorly understood. Using a streptozotocin mouse model of diabetic retinopathy, we report that p75(NTR) is upregulated very early in glia and in pericytes to mediate ligand-dependent induction of inflammatory cytokines, disruption of the neuro-glia-vascular unit, promotion of blood-retina barrier breakdown, edema, and neuronal death. In a mouse model of oxygen-induced retinopathy, mimicking proliferative DR, p75(NTR)-dependent inflammation leads to ischemia and pathological angiogenesis through Semaphorin 3A. The acute use of antagonists of p75(NTR) or antagonists of the ligand proNGF suppresses each distinct phase of pathology, ameliorate disease, and prevent disease progression. Thus, our study documents novel disease mechanisms and validates druggable targets for diabetic retinopathy. SIGNIFICANCE STATEMENT: Diabetic retinopathy (DR) affects an estimated 250 million people and has no effective treatment. Stages of progression comprise pericyte/vascular dysfunction, inflammation, glial activation, and neurodegeneration. The pathophysiology of each stage remains unclear. We postulated that the activity of p75NTR may be implicated. We show that p75NTR in glia and in pericytes mediate ligand-dependent induction of inflammatory cytokines, disruption of the neuro-glia-vascular unit, promotion of blood-retina barrier breakdown, edema, and neuronal death. p75NTR-promoted inflammation leads to ischemia and angiogenesis through Semaphorin 3A. Antagonists of p75NTR or antagonists of proNGF suppress each distinct phase of pathology, ameliorate disease, and prevent disease progression. Our study documents novel mechanisms in a pervasive disease and validates druggable targets for treatment.


Assuntos
Retinopatia Diabética/complicações , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Inflamação/etiologia , Fator de Crescimento Neural/metabolismo , Doenças Neurodegenerativas/etiologia , Precursores de Proteínas/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo , Doenças Vasculares/etiologia , Animais , Animais Recém-Nascidos , Anticorpos/farmacologia , Astrócitos/química , Células Cultivadas , Meios de Cultivo Condicionados/farmacologia , Citocinas/genética , Citocinas/metabolismo , Retinopatia Diabética/induzido quimicamente , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/fisiologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Marcação In Situ das Extremidades Cortadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator de Crescimento Neural/imunologia , Precursores de Proteínas/imunologia , Ratos , Receptores de Fator de Crescimento Neural/imunologia , Retina/patologia , Estreptozocina/toxicidade , Tomografia de Coerência Óptica , Vias Visuais/patologia
10.
Opt Lett ; 42(7): 1365-1368, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28362770

RESUMO

Adaptive Optics (AO) for scanning laser ophthalmoscopy enables high-resolution retinal imaging that can be used for preclinical research of diseases causing vision loss. Pupil Segmentation (PS) is an approach to wavefront-sensorless AO that acquires images within subregions across the imaging pupil to measure the wavefront slopes at the corresponding locations of the beam. We present PS-AO as an approach to correct ocular aberrations in ∼7 s, implemented to minimize respiratory motion from an anesthetized mouse. We demonstrated an improvement in resolution and an image intensity increase of ∼25% across all results using PS-AO for in vivo fluorescence retinal imaging in mice using a MEMS-based segmented deformable mirror.

11.
Opt Express ; 23(17): 21931-41, 2015 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-26368169

RESUMO

Adaptive optics is rapidly transforming microscopy and high-resolution ophthalmic imaging. The adaptive elements commonly used to control optical wavefronts are liquid crystal spatial light modulators and deformable mirrors. We introduce a novel Multi-actuator Adaptive Lens that can correct aberrations to high order, and which has the potential to increase the spread of adaptive optics to many new applications by simplifying its integration with existing systems. Our method combines an adaptive lens with an imaged-based optimization control that allows the correction of images to the diffraction limit, and provides a reduction of hardware complexity with respect to existing state-of-the-art adaptive optics systems. The Multi-actuator Adaptive Lens design that we present can correct wavefront aberrations up to the 4th order of the Zernike polynomial characterization. The performance of the Multi-actuator Adaptive Lens is demonstrated in a wide field microscope, using a Shack-Hartmann wavefront sensor for closed loop control. The Multi-actuator Adaptive Lens and image-based wavefront-sensorless control were also integrated into the objective of a Fourier Domain Optical Coherence Tomography system for in vivo imaging of mouse retinal structures. The experimental results demonstrate that the insertion of the Multi-actuator Objective Lens can generate arbitrary wavefronts to correct aberrations down to the diffraction limit, and can be easily integrated into optical systems to improve the quality of aberrated images.


Assuntos
Imageamento Tridimensional , Lentes , Óptica e Fotônica/instrumentação , Tomografia de Coerência Óptica/métodos , Análise de Ondaletas , Animais , Análise de Fourier , Camundongos , Fibras Nervosas/fisiologia
12.
Acta Biomater ; 173: 148-166, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37944773

RESUMO

The conventional aqueous outflow pathway, encompassing the trabecular meshwork (TM), juxtacanalicular connective tissue (JCT), and inner wall endothelium of Schlemm's canal (SC), governs intraocular pressure (IOP) regulation. This study targets the biomechanics of low-flow (LF) and high-flow (HF) regions within the aqueous humor outflow pathway in normal and glaucomatous human donor eyes, using a combined experimental and computational approach. LF and HF TM/JCT/SC complex tissues from normal and glaucomatous eyes underwent uniaxial tensile testing. Dynamic motion of the TM/JCT/SC complex was recorded using customized green-light optical coherence tomography during SC pressurization in cannulated anterior segment wedges. A hyperviscoelastic model quantified TM/JCT/SC complex properties. A fluid-structure interaction model simulated tissue-aqueous humor interaction. FluoSpheres were introduced into the pathway via negative pressure in the SC, with their motion tracked using two-photon excitation microscopy. Tensile test results revealed that the elastic moduli of the LF and HF regions in glaucomatous eyes are 3.5- and 1.5-fold stiffer than the normal eyes, respectively. The FE results also showed significantly larger shear moduli in the TM, JCT, and SC of the glaucomatous eyes compared to the normal subjects. The LF regions in normal eyes demonstrated larger elastic moduli compared to the HF regions in glaucomatous eyes. The resultant strain in the outflow tissues and velocity of the aqueous humor in the FSI models were in good agreement with the digital volume correlation and 3D particle image velocimetry data, respectively. This study uncovers stiffer biomechanical responses in glaucomatous eyes, with LF regions stiffer than HF regions in both normal and glaucomatous eyes. STATEMENT OF SIGNIFICANCE: This study delves into the biomechanics of the conventional aqueous outflow pathway, a crucial regulator of intraocular pressure and ocular health. By analyzing mechanical differences in low-flow and high-flow regions of normal and glaucomatous eyes, this research unveils the stiffer response in glaucomatous eyes. The distinction between regions' properties offers insights into aqueous humor outflow regulation, while the integration of experimental and computational methods enhances credibility. These findings have potential implications for disease management and present a vital step toward innovative ophthalmic interventions. This study advances our understanding of glaucoma's biomechanical basis and its broader impact on ocular health.


Assuntos
Glaucoma , Malha Trabecular , Humanos , Fenômenos Biomecânicos , Malha Trabecular/metabolismo , Glaucoma/metabolismo , Humor Aquoso , Esclera/metabolismo , Pressão Intraocular
13.
Biomed Opt Express ; 15(2): 1059-1073, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38404311

RESUMO

A real-time line-field optical coherence tomography (LF-OCT) system is demonstrated with image acquisition rates of up to 5000 B-frames or 2.5 million A-lines per second for 500 A-lines per B-frame. The system uses a high-speed low-cost camera to achieve continuous data transfer rates required for real-time imaging, allowing the evaluation of future applications in clinical or intraoperative environments. The light source is an 840 nm super-luminescent diode. Leveraging parallel computing with GPU and high speed CoaXPress data transfer interface, we were able to acquire, process, and display OCT data with low latency. The studied system uses anamorphic beam shaping in the detector arm, optimizing the field of view and sensitivity for imaging biological tissue at cellular resolution. The lateral and axial resolution measured in air were 1.7 µm and 6.3 µm, respectively. Experimental results demonstrate real-time inspection of the trabecular meshwork and Schlemm's canal on ex vivo corneoscleral wedges and real-time imaging of endothelial cells of human subjects in vivo.

14.
Biomed Opt Express ; 15(5): 3412-3424, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38855676

RESUMO

Comprehensive visualization of retina morphology is essential in the diagnosis and management of retinal diseases in pediatric populations. Conventional imaging techniques often face challenges in effectively capturing the peripheral retina, primarily due to the limitations in current optical designs, which lack the necessary field of view to characterize the far periphery. To address this gap, our study introduces a novel ultra-widefield optical coherence tomography angiography (OCTA) system. This system, specifically tailored for pediatric applications, incorporates an ultrahigh-speed 800 kHz swept-source laser. The system's innovative design achieves a 140° field of view while maintaining excellent optical performance. Over the last 15 months, we have conducted 379 eye examinations on 96 babies using this system. It demonstrates marked efficacy in the diagnosis of retinopathy of prematurity, providing detailed and comprehensive peripheral retinal angiography. The capabilities of the ultra-widefield handheld OCTA system in enhancing the clarity and thoroughness of retina vascularization assessments have significantly improved the precision of diagnoses and the customization of treatment strategies. Our findings underscore the system's potential to advance pediatric ophthalmology and broaden the scope of retinal imaging.

15.
Ophthalmol Retina ; 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38735640

RESUMO

OBJECTIVE: Isolated retinal neovascularization (IRNV) is a common finding in patients with stage 2 and 3 retinopathy of prematurity (ROP). This study aimed to further classify the clinical course and significance of these lesions (previously described as "popcorn" based on clinical appearance) in patients with ROP as visualized with ultrawidefield OCT (UWF-OCT). DESIGN: Single center, retrospective case series. PARTICIPANTS: Images were collected from 136 babies in the Oregon Health and Science University neonatal intensive care unit. METHODS: A prototype UWF-OCT device captured en face scans (>140°), which were reviewed for the presence of IRNV along with standard zone, stage, and plus classification. In a cross-sectional analysis we compared demographics and the clinical course of eyes with and without IRNV. Longitudinally, we compared ROP severity using a clinician-assigned vascular severity score (VSS) and compared the risk of progression among eyes with and without IRNV using multivariable logistic regression. MAIN OUTCOME MEASURES: Differences in clinical demographics and disease progression between patients with and without IRNV. RESULTS: Of the 136 patients, 60 developed stage 2 or worse ROP during their disease course, 22 of whom had IRNV visualized on UWF-OCT (37%). On average, patients with IRNV had lower birth weights (BWs) (660.1 vs. 916.8 g, P = 0.001), gestational age (GA) (24.9 vs. 26.1 weeks, P = 0.01), and were more likely to present with ROP in zone I (63.4% vs. 15.8%, P < 0.001). They were also more likely to progress to stage 3 (68.2% vs. 13.2%, P < 0.001) and receive treatment (54.5% vs. 15.8%, P = 0.002). Eyes with IRNV had a higher peak VSS (5.61 vs. 3.73, P < 0.001) and averaged a higher VSS throughout their disease course. On multivariable logistic regression, IRNV was independently associated with progression to stage 3 (P = 0.02) and requiring treatment (P = 0.03), controlling for GA, BW, and initial zone 1 disease. CONCLUSIONS: In this single center study, we found that IRNV occurs in higher risk babies and was an independent risk factor for ROP progression and treatment. These findings may have implications for OCT-based ROP classifications in the future. FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

16.
Acta Biomater ; 164: 346-362, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37072067

RESUMO

The aqueous humor actively interacts with the trabecular meshwork (TM), juxtacanalicular tissue (JCT), and Schlemm's canal (SC) through a dynamic fluid-structure interaction (FSI) coupling. Despite the fact that intraocular pressure (IOP) undergoes significant fluctuations, our understanding of the hyperviscoelastic biomechanical properties of the aqueous outflow tissues is limited. In this study, a quadrant of the anterior segment from a normal human donor eye was dynamically pressurized in the SC lumen, and imaged using a customized optical coherence tomography (OCT). The TM/JCT/SC complex finite element (FE) with embedded collagen fibrils was reconstructed based on the segmented boundary nodes in the OCT images. The hyperviscoelastic mechanical properties of the outflow tissues' extracellular matrix with embedded viscoelastic collagen fibrils were calculated using an inverse FE-optimization method. Thereafter, the 3D microstructural FE model of the TM, with adjacent JCT and SC inner wall, from the same donor eye was constructed using optical coherence microscopy and subjected to a flow load-boundary from the SC lumen. The resultant deformation/strain in the outflow tissues was calculated using the FSI method, and compared to the digital volume correlation (DVC) data. TM showed larger shear modulus (0.92 MPa) compared to the JCT (0.47 MPa) and SC inner wall (0.85 MPa). Shear modulus (viscoelastic) was larger in the SC inner wall (97.65 MPa) compared to the TM (84.38 MPa) and JCT (56.30 MPa). The conventional aqueous outflow pathway is subjected to a rate-dependent IOP load-boundary with large fluctuations. This necessitates addressing the biomechanics of the outflow tissues using hyperviscoelastic material-model. STATEMENT OF SIGNIFICANCE: While the human conventional aqueous outflow pathway is subjected to a large-deformation and time-dependent IOP load-boundary, we are not aware of any studies that have calculated the hyperviscoelastic mechanical properties of the outflow tissues with embedded viscoelastic collagen fibrils. A quadrant of the anterior segment of a normal humor donor eye was dynamically pressurized from the SC lumen with relatively large fluctuations. The TM/JCT/SC complex were OCT imaged and the mechanical properties of the tissues with embedded collagen fibrils were calculated using the inverse FE-optimization algorithm. The resultant displacement/strain in the FSI outflow model was validated versus the DVC data. The proposed experimental-computational workflow may significantly contribute to understanding of the effects of different drugs on the biomechanics of the conventional aqueous outflow pathway.


Assuntos
Humor Aquoso , Malha Trabecular , Humanos , Fenômenos Biomecânicos , Fluxo de Trabalho , Malha Trabecular/metabolismo , Pressão Intraocular , Colágeno/metabolismo
17.
Invest Ophthalmol Vis Sci ; 64(14): 6, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37930688

RESUMO

Purpose: The purpose of this study was to demonstrate the utility of polarization-diversity optical coherence tomography (PD-OCT), a noninvasive imaging technique with melanin-specific contrast, in the quantitative and qualitative assessment of choroidal nevi. Methods: Nevi were imaged with a custom-built 55-degree field-of-view (FOV) 400 kHz PD-OCT system. Imaging features on PD-OCT were compared to those on fundus photography, auto-fluorescence, ultrasound, and non-PD-OCT images. Lesions were manually segmented for size measurement and metrics for objective assessment of melanin distributions were calculated, including degree of polarization uniformity (DOPU), attenuation coefficient, and melanin occupancy rate (MOR). Results: We imaged 17 patients (mean age = 69.5 years, range = 37-90) with 11 pigmented, 3 non-pigmented, and 3 mixed pigmentation nevi. Nevi with full margin acquisition had an average longest basal diameter of 5.1 mm (range = 2.99-8.72 mm) and average height of 0.72 mm (range = 0.37 mm-2.09 mm). PD-OCT provided clear contrast of choroidal melanin content, distribution, and delineation of nevus margins for melanotic nevi. Pigmented nevi were found to have lower DOPU, higher attenuation coefficient, and higher MOR than non-pigmented lesions. Melanin content on PD-OCT was consistent with pigmentation on fundus in 15 of 17 nevi (88%). Conclusions: PD-OCT allows objective assessment of choroidal nevi melanin content and distribution. In addition, melanin-specific contrast by PD-OCT enables clear nevus margin delineation and may improve serial growth surveillance. Further investigation is needed to determine the clinical significance and prognostic value of melanin characterization by PD-OCT in the evaluation of choroidal nevi.


Assuntos
Neoplasias da Coroide , Nevo Pigmentado , Nevo , Neoplasias Cutâneas , Humanos , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Tomografia de Coerência Óptica , Melaninas , Nevo Pigmentado/diagnóstico por imagem , Nevo/diagnóstico por imagem , Neoplasias da Coroide/diagnóstico por imagem
18.
IEEE Trans Med Imaging ; 42(11): 3219-3228, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37216244

RESUMO

We introduce a new concept of panoramic retinal (panretinal) optical coherence tomography (OCT) imaging system with a 140° field of view (FOV). To achieve this unprecedented FOV, a contact imaging approach was used which enabled faster, more efficient, and quantitative retinal imaging with measurement of axial eye length. The utilization of the handheld panretinal OCT imaging system could allow earlier recognition of peripheral retinal disease and prevent permanent vision loss. In addition, adequate visualization of the peripheral retina has a great potential for better understanding disease mechanisms regarding the periphery. To the best of our knowledge, the panretinal OCT imaging system presented in this manuscript has the widest FOV among all the retina OCT imaging systems and offers significant values in both clinical ophthalmology and basic vision science.


Assuntos
Retina , Tomografia de Coerência Óptica , Tomografia de Coerência Óptica/métodos , Retina/diagnóstico por imagem
19.
Biomed Opt Express ; 13(3): 1685-1701, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35414988

RESUMO

The present paper introduces a numerical calibration method for the easy and practical implementation of multiple spectrometer-based spectral-domain optical coherence tomography (SD-OCT) systems. To address the limitations of the traditional hardware-based spectrometer alignment across more than one spectrometer, we applied a numerical spectral calibration algorithm where the pixels corresponding to the same wavelength in each unit are identified through spatial- and frequency-domain interferometric signatures of a mirror sample. The utility of dual spectrometer-based SD-OCT imaging is demonstrated through in vivo retinal imaging at two different operation modes with high-speed and dual balanced acquisitions, respectively, in which the spectral alignment is critical to achieve improved retinal image data without any artifacts caused by misalignment of the spectrometers.

20.
Biomed Opt Express ; 13(9): 5004-5014, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36187260

RESUMO

Corneal imaging is important for the diagnostic and therapeutic evaluation of many eye diseases. Optical coherence tomography (OCT) is extensively used in ocular imaging due to its non-invasive and high-resolution volumetric imaging characteristics. Optical coherence microscopy (OCM) is a technical variation of OCT that can image the cornea with cellular resolution. Here, we demonstrate a blue-light OCM as a low-cost and easily reproducible system to visualize corneal cellular structures such as epithelial cells, endothelial cells, keratocytes, and collagen bundles within stromal lamellae. Our blue-light OCM system achieved an axial resolution of 12 µm in tissue over a 1.2 mm imaging depth, and a lateral resolution of 1.6 µm over a field of view of 750 µm × 750 µm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA