Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Water Res ; 256: 121643, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38663211

RESUMO

Tire wear particles (TWPs) enter aquatic ecosystems through various pathways, such as rainwater and urban runoff. Additives in TWPs can harm aquatic organisms in these ecosystems. Therefore, it is essential to investigate their toxicity to aquatic organisms. In our study, we initially recorded the median effective concentrations of 21 TWP-derived compounds on Chlorella vulgaris growth, ranging from 0.04 to 8.60 mg/L. Subsequently, through an extensive review of the literature, we incorporated 112 compounds with specific toxicity endpoints to construct the QSAR model using genetic algorithm and multiple linear regression techniques, followed by the construction of the consensus model and the quantitative read-across structure-activity relationship (q-RASAR) model. Meanwhile, we employed rigorous internal and external validation measures to assess the performance of the model. The results indicated that the developed q-RASAR model exhibited strong adaptation, robustness, and reliable prediction, with q-RASAR indicators of Q2LOO = 0.7673, R2tr = 0.8079, R2test = 0.8610, Q2Fn = 0.8285-0.8614, and CCCtest = 0.9222. Based on an external dataset containing 128 emerging TWP-derived compounds, the model's applicability domain coverage was 90.6 %. The q-RASAR model predicted that the structure of diphenylamine was associated with higher toxicity, possibly liked to the SpMax2_Bhm and LogBCF descriptors. The established model reliably provides prediction and fills a critical data gap. These findings highlight the potential risks posed by emerging TWP-derived compounds to aquatic organisms.


Assuntos
Chlorella vulgaris , Relação Quantitativa Estrutura-Atividade , Chlorella vulgaris/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/química
2.
J Hazard Mater ; 458: 132022, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37453356

RESUMO

Tire wear particles (TWPs) are increasingly being found in the aquatic environment. However, there is limited information available on the environmental consequences of TWP constituents that may be release into water. In this study, TWP leachate samples were obtained by immersing TWPs in ultrapure water. Using high-resolution mass spectrometry and toxicity identification, we identified potentially toxic organic substances in the TWP leachates. Additionally, we investigated their toxicity and underlying mechanisms. Through our established workflow, we structurally identified 13 substances using reference standards. The median effective concentration (EC50) of TWP leachates on Scenedesmus obliquus growth was comparable to that of simulated TWP leachates prepared with consistent concentrations of the 13 identified substances, indicating their dominance in the toxicity of TWP leachates. Among these substances, cyclic amines (EC50: 1.04-3.65 mg/L) were found to be toxic to S. obliquus. We observed significant differential metabolites in TWP leachate-exposed S. obliquus, primarily associated with linoleic acid metabolism and purine metabolism. Oxidative stress was identified as a crucial factor in algal growth inhibition. Our findings shed light on the risk posed by TWP leachable substances to aquatic organisms.


Assuntos
Clorofíceas , Scenedesmus , Poluentes Químicos da Água , Água , Poluentes Químicos da Água/análise
3.
Sci Total Environ ; 826: 153989, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35192813

RESUMO

Organophosphate flame retardants (OPFRs) have been widely used in consumer products to prevent fire spread. However, once released into the atmospheric environment, they may accumulate in humans and undergo metabolic transformation and excretion by urine. In order to clarify the human exposure to OPFRs, a quick, easy, cheap, effective, rugged, and safe method for the simultaneous determination of urinary OPFRs and their metabolites by ultra-performance liquid chromatography-tandem triple quadrupole mass spectrometry was developed. After the optimization by a single-factor or orthogonal experiment, the satisfactory recovery (87.8-119%), matrix effect (-8.88-9.29%), method quantitation limit (3.66-159 ng/L), and inter-day repeatability (1.24 - 10.6%) of most analytes were achieved in artificial urine samples. Based on a monitoring test by the developed method, we propose that urinary bis(1-chloro-2-propyl) phosphate and di-p-cresyl phosphate could be used to trace human exposure to tris(1-chloro-2-propyl) phosphate and tricresyl phosphate, respectively. Most importantly, this is the first study to reveal that 4-hydroxyphenyl diphenyl phosphate (4-OH-TPHP) was dominantly presented in its conjugated form rather than its free form in urine (p = 0.037). Overall, the obtained results contribute a relatively rapid method to help conduct large-scale urine monitoring for revealing the human exposure and risk of OPFRs.


Assuntos
Retardadores de Chama , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida/métodos , Retardadores de Chama/análise , Humanos , Organofosfatos/metabolismo , Fosfatos , Espectrometria de Massas em Tandem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA