Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 256: 114897, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37043943

RESUMO

BACKGROUND: Chronic ethanol ingestion causes persistent oxidative stresses in the liver, leading to hepatic injury and fibrosis, but the underlying mechanisms remain unclear. Recently, ambient particulate matter (PM) has been confirmed to aggravate high-fat diet-induced liver fibrosis by enhancing oxidative stress. Thus, we hypothesized that oxidative stress induced by ambient PM exposure increases the severity of liver fibrosis caused by ethanol ingestion. METHODS AND RESULTS: C57BL/6 mice were subjected to ambient PM inhalation, ethanol ingestion or ambient PM-plus-ethanol ingestion for 12 weeks. Oxidative stress, mitochondrial reactive oxygen species (MtROS), liver fibrosis and ferroptosis indicators in the liver were evaluated. In vitro, oxidative stress, MtROS, ferroptosis indicators, profibrotic molecules and fibrosis markers in hepatic stellate (LX-2) cells were also determined. We found that ethanol ingestion markedly elevated hepatic oxidative stress and MtROS levels, triggered hepatic ferroptosis, and induced liver fibrosis, along with upregulation of the profibrotic molecule TGF-ß1 and fibrosis marker collagen-I, in mice. Moreover, the combination of ambient PM and ethanol accelerated these adverse effects. Importantly, the combination of PM exposure and ethanol ingestion had a synergistic effect on these changes. In vitro, LX-2 cells activated with PM2.5 alone or combined with ethanol showed upregulation of TGF-ß1 and collagen-I. In addition, the levels of MtROS, the oxidative stress marker 4-hydroxynonenal (4-HNE) and ferroptosis-related proteins and the GSH/GSSG ratio were significantly increased in PM2.5 plus ethanol-treated LX-2 cells. After pretreatment with a MtROS scavenger (Mito-TEMPO), we found that Mito-TEMPO treatment inhibited ferroptosis and oxidative stress in PM2.5 plus ethanol-treated LX-2 cells. Furthermore, a specific ferroptosis inhibitor (Fer-1) decreased the levels of ferroptosis-related proteins and profibrotic molecules in activated LX-2 cells co-exposed to PM2.5 and ethanol. CONCLUSION: In this study, we revealed that ambient PM exposure induced profibrotic effects and that combined exposure to ambient PM and chronic ethanol ingestion exacerbated hepatic fibrosis, which may trigger ferroptosis by increasing MtROS, thereby activating hepatic stellate cells.


Assuntos
Ferroptose , Material Particulado , Camundongos , Animais , Material Particulado/efeitos adversos , Fator de Crescimento Transformador beta1 , Espécies Reativas de Oxigênio/metabolismo , Camundongos Endogâmicos C57BL , Cirrose Hepática/induzido quimicamente , Fibrose , Colágeno Tipo I/efeitos adversos , Transdução de Sinais , Etanol , Ingestão de Alimentos
2.
J Appl Microbiol ; 133(5): 3126-3138, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35951725

RESUMO

AIMS: Type 2 diabetes (T2D) is a chronic disease that manifests as endocrine and metabolic disorders that seriously threatening public health. This study aimed to investigate the effects of Bacillus sp. DU-106 on anti-diabetic effects and gut microbiota in C57BL/6J mice fed a high-fat diet and streptozotocin-induced T2D. METHODS AND RESULTS: Bacillus sp. DU-106 was administered to model mice for eight consecutive weeks. Oral administration of Bacillus sp. DU-106 decreased food and water intake and alleviated body weight loss. Moreover, Bacillus sp. DU-106 imparted several health benefits to mice, including balanced blood glucose, alleviation of insulin resistance in T2D mice and an improvement in lipid metabolism. Furthermore, Bacillus sp. DU-106 protected against liver and pancreatic impairment. Additionally, Bacillus sp. DU-106 treatment reshaped intestinal flora by enhancing gut microbial diversity and enriching the abundance of certain functional bacteria. CONCLUSION: Collectively, these findings suggest that Bacillus sp. DU-106 can ameliorate T2D by regulating the gut microbiota. SIGNIFICANCE AND IMPACT OF STUDY: Therefore, a novel probiotic, Bacillus sp. DU-106 may be a promising therapeutic agent for improving and alleviating T2D in mice.


Assuntos
Bacillus , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Camundongos , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Estreptozocina/farmacologia , Estreptozocina/uso terapêutico , Glicemia , Bacillus/metabolismo , Camundongos Endogâmicos C57BL , Dieta Hiperlipídica/efeitos adversos
3.
Ecotoxicol Environ Saf ; 238: 113571, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35512472

RESUMO

BACKGROUND: Chronic kidney disease (CKD) is a public health problem of which the prevalence is increasing worldwide. Several studies have reported that ambient particulate matter (PM) causes kidney injury, which may be related to the risk of CKD. However, the underlying molecular mechanisms have not been fully clarified. In addition, whether a high-fat diet (HFD) could exacerbate ambient PM-induced nephrotoxicity has not been evaluated. This study aimed to investigate the combined effect of ambient PM and a HFD on renal injury. METHODS AND RESULTS: Male C57BL/6 J mice were fed either a normal diet or a HFD and exposed to filtered air (FA) or particulate matter (PM) for 18 weeks. In the present study, we observed that renal function changed (serum blood urea nitrogen and serum creatinine), and exposure to PM and a HFD caused a synergistic effect on renal injury. Histopathological analysis showed that PM exposure induced renal fibrosis in mice, and combined exposure to PM and a HFD exacerbated these adverse effects. Moreover, ambient PM exposure activated the nucleotide-binding domain and leucine-rich repeat protein 3 (NLRP3) inflammasome and increased the inflammatory response, as indicated by the increases in interleukin-1ß, interleukin-6 and tumor necrosis factor-α in the serum and kidney, as well as the upregulation of specific renal fibrosis-related markers (transforming growth factor-ß1 and p-Smad2) in the kidney tissues of mice. Furthermore, combined exposure to PM and a HFD augmented these changes in the kidney. In vitro, inhibition of the NLRP3 inflammasome by MCC950 (an inhibitor of NLRP3) reduced the levels of proinflammatory cytokines and the expression of transforming growth factor-ß1 and p-Smad2 in HK-2 cells. CONCLUSION: Taken together, our data indicated that PM exposure caused renal inflammation and induced profibrotic effects on the kidney, and combined exposure to ambient PM and a HFD exacerbated renal injury, which may involve activation of the NLRP3 inflammasome and the TGF-ß1/Smad2 signaling pathway.


Assuntos
Dieta Hiperlipídica , Inflamassomos , Material Particulado , Insuficiência Renal Crônica , Fator de Crescimento Transformador beta1 , Animais , Dieta Hiperlipídica/efeitos adversos , Fibrose , Inflamassomos/metabolismo , Rim/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Material Particulado/toxicidade , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/metabolismo , Transdução de Sinais , Proteína Smad2/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo
4.
Int J Mol Sci ; 23(16)2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36012740

RESUMO

MicroRNAs (miRNAs), a class of endogenous small RNAs, are broadly involved in plant development, morphogenesis and responses to various environmental stresses, through manipulating the cleavage, translational expression, or DNA methylation of target mRNAs. miR393 is a conserved miRNA family present in many plants, which mainly targets genes encoding the transport inhibitor response1 (TIR1)/auxin signaling F-box (AFB) auxin receptors, and thus greatly affects the auxin signal perception, Aux/IAA degradation, and related gene expression. This review introduces the advances made on the miR393/target module regulating plant development and the plant's responses to biotic and abiotic stresses. This module is valuable for genetic manipulation of optimized conditions for crop growth and development and would also be helpful in improving crop yield through molecular breeding.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas F-Box , MicroRNAs , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas F-Box/genética , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Desenvolvimento Vegetal/genética , Plantas Geneticamente Modificadas/genética , Receptores de Superfície Celular/metabolismo , Estresse Fisiológico/genética
5.
Int J Mol Sci ; 24(1)2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36613800

RESUMO

Brassica napus is an important crop for edible oil, vegetables, biofuel, and animal food. It is also an ornamental crop for its various petal colors. Flavonoids are a group of secondary metabolites with antioxidant activities and medicinal values, and are important to plant pigmentation, disease resistance, and abiotic stress responses. The yellow seed coat, purple leaf and inflorescence, and colorful petals of B. napus have been bred for improved nutritional value, tourism and city ornamentation. The putative loci and genes regulating flavonoid biosynthesis in B. napus have been identified using germplasms with various seed, petal, leaf, and stem colors, or different flavonoid contents under stress conditions. This review introduces the advances of flavonoid profiling, biosynthesis, and regulation during development and stress responses of B. napus, and hopes to help with the breeding of B. napus with better quality, ornamental value, and stress resistances.


Assuntos
Brassica napus , Brassica napus/genética , Brassica napus/metabolismo , Melhoramento Vegetal , Flavonoides/metabolismo , Folhas de Planta/metabolismo , Sementes/metabolismo , Regulação da Expressão Gênica de Plantas
6.
BMC Plant Biol ; 21(1): 140, 2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33726676

RESUMO

BACKGROUND: Genomic imprinting results in the expression of parent-of-origin-specific alleles in the offspring. Brassica napus is an oil crop with research values in polyploidization. Identification of imprinted genes in B. napus will enrich the knowledge of genomic imprinting in dicotyledon plants. RESULTS: In this study, we performed reciprocal crosses between B. napus L. cultivars Yangyou 6 (Y6) and Zhongshuang 11 (ZS11) to collect endosperm at 20 and 25 days after pollination (DAP) for RNA-seq. In total, we identified 297 imprinted genes, including 283 maternal expressed genes (MEGs) and 14 paternal expressed genes (PEGs) according to the SNPs between Y6 and ZS11. Only 36 genes (35 MEGs and 1 PEG) were continuously imprinted in 20 and 25 DAP endosperm. We found 15, 2, 5, 3, 10, and 25 imprinted genes in this study were also imprinted in Arabidopsis, rice, castor bean, maize, B. rapa, and other B. napus lines, respectively. Only 26 imprinted genes were specifically expressed in endosperm, while other genes were also expressed in root, stem, leaf and flower bud of B. napus. A total of 109 imprinted genes were clustered on rapeseed chromosomes. We found the LTR/Copia transposable elements (TEs) were most enriched in both upstream and downstream of the imprinted genes, and the TEs enriched around imprinted genes were more than non-imprinted genes. Moreover, the expression of 5 AGLs and 6 pectin-related genes in hybrid endosperm were significantly changed comparing with that in parent endosperm. CONCLUSION: This research provided a comprehensive identification of imprinted genes in B. napus, and enriched the gene imprinting in dicotyledon plants, which would be useful in further researches on how gene imprinting regulates seed development.


Assuntos
Brassica napus/genética , Brassica napus/metabolismo , Quimera , Endosperma/genética , Endosperma/metabolismo , Regulação da Expressão Gênica de Plantas , Impressão Genômica , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Genes de Plantas
7.
J Pineal Res ; 70(1): e12686, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32730639

RESUMO

Fine particulate matter (PM2.5 ) exposure is correlated with the risk of developing cardiac fibrosis. Melatonin is a major secretory product of the pineal gland that has been reported to prevent fibrosis. However, whether melatonin affects the adverse health effects of PM2.5 exposure has not been investigated. Thus, this study was aimed to investigate the protective effect of melatonin against PM2.5 -accelerated cardiac fibrosis. The echocardiography revealed that PM2.5 had impaired both systolic and diastolic cardiac function in ApoE-/- mice. Histopathological analysis demonstrated that PM2.5 induced cardiomyocyte hypertrophy and fibrosis, particularly perivascular fibrosis, while the melatonin administration was effective in alleviating PM2.5 -induced cardiac dysfunction and fibrosis in mice. Results of electron microscopy and confocal scanning laser microscope confirmed that melatonin had restorative effects against impaired mitochondrial ultrastructure and augmented mitochondrial ROS generation in PM2.5 -treated group. Further investigation revealed melatonin administration could significantly reverse the PM2.5 -induced phenotypic modulation of cardiac fibroblasts into myofibroblasts. For the first time, our study found that melatonin effectively alleviates PM2.5 -induced cardiac dysfunction and fibrosis via inhibiting mitochondrial oxidative injury and regulating SIRT3-mediated SOD2 deacetylation. Our findings indicate that melatonin could be a therapy medicine for prevention and treatment of air pollution-associated cardiac diseases.


Assuntos
Antioxidantes/farmacologia , Cardiomiopatias/prevenção & controle , Melatonina/farmacologia , Mitocôndrias Cardíacas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Material Particulado , Acetilação , Animais , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Cardiotoxicidade , Linhagem Celular , Modelos Animais de Doenças , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose , Humanos , Hiperlipidemias/complicações , Masculino , Camundongos Knockout para ApoE , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/ultraestrutura , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/ultraestrutura , Oxirredução , Tamanho da Partícula , Processamento de Proteína Pós-Traducional , Espécies Reativas de Oxigênio/metabolismo , Sirtuína 3/metabolismo , Superóxido Dismutase/metabolismo
8.
Neoplasma ; 68(4): 875-881, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33998235

RESUMO

The relationship between 18F-FDG uptake and HER2 expression in colorectal cancer has not been investigated yet. This study aimed to investigate the predictive efficiency of preoperative 18F-FDG PET/CT for HER2 expression and prognosis in colorectal cancer. We retrospectively analyzed 131 colorectal cancer patients who underwent 18F-FDG PET/CT scans in our center before surgery. HER2 positivity was defined as a score of 2+ or 3+, and HER2 negativity was defined as a score of 0 or 1+ in immunohistochemistry of HER2 expression. The relationships between 18F-FDG PET/CT metabolic parameters and HER2 expression and the prognosis of colorectal patients were systematically studied. From 131 colorectal cancer patients, there were 27 (20.6%) HER2-positive patients. SUVmax of the primary tumor (mean ± SD) in the HER2-positive and the HER2-negative group was 18.238±8.912 and 14.455±6.531, respectively. SUVmax in the HER2-positive group was higher than in the negative group (p=0.034). When the cutoff was based on 5 cm, tumor size demonstrated significant positive correlations with SUVmax (p=0.012) and HER2 expression (p=0.014). Multivariate analysis showed that both SUVmax and tumor size had a significant correlation with HER2 expression (p=0.049 vs. p=0.043, respectively). There was no statistical difference in PFS between the HER2-positive and the HER2-negative group (p=0.28). 18F-FDG metabolic parameters had a significant correlation with HER2 expression in colorectal cancer. SUVmax combined with primary tumor size were better for predicting the HER2 status of colorectal cancer. 18F-FDG metabolic parameters had a significant correlation with HER2 expression in colorectal cancer. SUVmax combined with primary tumor size were better for predicting the HER2 status of colorectal cancer.


Assuntos
Neoplasias Colorretais , Fluordesoxiglucose F18 , Neoplasias Colorretais/diagnóstico por imagem , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Compostos Radiofarmacêuticos , Receptor ErbB-2 , Estudos Retrospectivos
9.
BMC Plant Biol ; 19(1): 203, 2019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-31096923

RESUMO

BACKGROUND: Brassica napus is of substantial economic value for vegetable oil, biofuel, and animal fodder production. The breeding of yellow-seeded B. napus to improve seed quality with higher oil content, improved oil and meal quality with fewer antinutrients merits attention. Screening the genes related to this phenotype is valuable for future rapeseed breeding. RESULTS: A total of 85,407 genes, including 4317 novel genes, were identified in the developing seeds of yellow- and black-seeded B. napus, and yellow rapeseed was shown to be an introgression line between black-seeded B. napus and yellow-seeded Sinapis alba. A total of 15,251 differentially expressed genes (DEGs) were identified among all the libraries, and 563 and 397 common DEGs were identified throughout black and yellow seed development, including 80 upregulated and 151 downregulated genes related to seed development and fatty acid accumulation. In addition, 11 up-DEGs and 31 down-DEGs were identified in all developmental stages of yellow rapeseed compared with black seed. Enrichment analysis revealed that many DEGs were involved in biosynthetic processes, pigment metabolism, and oxidation-reduction processes, such as flavonoid and phenylpropanoid biosynthesis, phenylalanine metabolism, flavone and flavonol biosynthesis, and fatty acid biosynthesis and metabolism. We found that more than 77 DEGs were related to flavonoid and lignin biosynthesis, including 4CL, C4H, and PAL, which participated in phenylalanine metabolism, and BAN, CHI/TT5, DFR, F3H, FLS, LDOX, PAP, CHS/TT4, TT5, bHLH/TT8, WD40, MYB, TCP, and CYP, which were involved in flavonoid biosynthesis. Most of these DEGs were downregulated in yellow rapeseed and were consistent with the decreased flavonoid and lignin contents. Both up- and down-DEGs related to fatty acid biosynthesis and metabolism were also analyzed, which could help to explain the improved oil content of yellow rapeseed. CONCLUSION: This research provided comprehensive transcriptome data for yellow-seeded B. napus with a unique genetic background, and all the DEGs in comparison with the black-seeded counterpart could help to explain seed quality differences, such as lower pigmentation and lignin contents, and higher oil content.


Assuntos
Brassica napus/genética , Sementes/genética , Brassica napus/crescimento & desenvolvimento , Ácidos Graxos/metabolismo , Flavonoides/metabolismo , Perfilação da Expressão Gênica , Genes de Plantas/genética , Genes de Plantas/fisiologia , Lignina/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Sementes/crescimento & desenvolvimento , Análise de Sequência de DNA , Transcriptoma
10.
Plant Cell Rep ; 38(5): 545-558, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30706138

RESUMO

KEY MESSAGE: Abnormal tapetum degradation and anther development in cytoplasmic male sterility SaNa-1A are the main reasons for the anther abortion. SaNa-1A is a novel cytoplasmic male sterility (CMS) line of Brassica napus derived from somatic hybrids of B. napus-Sinapis alba, and SaNa-1B is the corresponding maintainer line. Ultrastructural comparison between developing anthers of sterile and maintainer lines revealed abnormal subcellular structure of pollen mother cells (PMCs) in the CMS line. The PMC volume and size of nucleus and nucleolus in the CMS line were smaller than those in the maintainer line. The abnormal tapetum cell development and delayed tapetum degradation inhibited microspore development. Finally, anther abortion in the CMS line occurred. Physiological and biochemical analyses of developing anthers and mitochondria revealed that over-accumulation of reactive oxygen species (ROS) in the SaNa-1A and deficiency in antioxidant enzyme system aggravated the oxidization of membrane lipids, resulting in malondialdehyde (MDA) accumulation in anthers. High MDA content in the CMS line was toxic to the cells. ROS accumulation in SaNa-1A also affected anther development. Abnormal structure and function of terminal oxidase, which participates in the electron transport chain of mitochondrial membrane, were observed and affected the activity of cytochrome c oxidase and F1F0-ATPase, which inhibited ATP biosynthesis. Proline deficiency in SaNa-1A also affected anther development. Few hybridization signals of programmed cell death (PCD) in tetrads of SaNa-1A were identified using TdT-mediated dUTP Nick-End Labeling assay. PCD was not obvious in tapetum cells of SaNa-1A until the unicellular stage. These results validated the cytological differences mentioned above, and proved that abnormal tapetum degradation and anther development in SaNa-1A were the main reasons for the anther abortion.


Assuntos
Brassica napus/metabolismo , Citoplasma/metabolismo , Brassica napus/fisiologia , Metabolismo Energético/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Infertilidade das Plantas/fisiologia , Espécies Reativas de Oxigênio/metabolismo
11.
BMC Plant Biol ; 18(1): 52, 2018 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-29587648

RESUMO

BACKGROUND: Low temperature is a major abiotic stress affecting the production of rapeseed in China by impeding plant growth and development. A comprehensive knowledge of small-RNA expression pattern in Brassica rapa under cold stress could improve our knowledge of microRNA-mediated stress responses. RESULTS: A total of 353 cold-responsive miRNAs, 84 putative novel and 269 conserved miRNAs, were identified from the leaves and roots of two winter turnip rape varieties 'Longyou 7' (cold-tolerant) and 'Tianyou 4' (cold-sensitive), which were stressed under - 4 °C for 8 h. Eight conserved (miR166h-3p-1, miR398b-3p, miR398b-3p-1, miR408d, miR156a-5p, miR396h, miR845a-1, miR166u) and two novel miRNAs (Bra-novel-miR3153-5p and Bra-novel-miR3172-5p) were differentially expressed in leaves of 'Longyou 7' under cold stress. Bra-novel-miR3936-5p was up-regulated in roots of 'Longyou 7' under cold stress. Four and five conserved miRNAs were differentially expressed in leaves and roots of 'Tianyou 4' after cold stress. Besides, we found two conserved miRNAs (miR319e and miR166m-2) were down-regulated in non-stressed roots of 'Longyou 7' compared with 'Tianyou 4'. After cold stress, we found two and eight miRNAs were differentially expressed in leaves and roots of 'Longyou 7' compared with 'Tianyou 4'. The differentially expressed miRNAs between two cultivars under cold stress include novel miRNAs and the members of the miR166 and miR319 families. A total of 211 target genes for 15 known miRNAs and two novel miRNAs were predicted by bioinformatic analysis, mainly involved in metabolic processes and stress responses. Five differentially expressed miRNAs and predicted target genes were confirmed by quantitative reverse transcription PCR, and the expressional changes of target genes were negatively correlated to differentially expressed miRNAs. Our data indicated that some candidate miRNAs (e.g., miR166e, miR319, and Bra-novel-miR3936-5p) may play important roles in plant response to cold stress. CONCLUSIONS: Our work indicates that miRNA and putative target genes mediated metabolic processes and stress responses are significant to cold tolerance in B. rapa.


Assuntos
Brassica rapa/genética , MicroRNAs/genética , RNA de Plantas/genética , Temperatura Baixa , Regulação da Expressão Gênica de Plantas/genética , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de RNA
12.
Curr Microbiol ; 75(3): 316-322, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29090322

RESUMO

A novel bacterial cells immobilized carrier (ZnONPs/PVA), polyvinyl alcohol (PVA) composites decorated with ZnO nanoparticles (ZnO NPs), was prepared and used for immobilization of the strain Ochrobactrum sp. LC-1, and subsequently for quinoline degrading in water. Characterization of ZnONPs/PVA by using X-ray diffractometer and scanning electron microscopy demonstrated that ZnO NPs were coated on the surface of PVA cubes evenly and the bacterium grew well on the ZnONPs/PVA. Quinoline biodegradation results showed that the degradation effect of quinoline by ZnONPs/PVA immobilized cells was superior to the free cells significantly. The structure and physical properties of ZnNPs/PVA were maintained steady after the reuse of ZnNPs/PVA for cells immobilization several times. Reusability of the ZnONPs/PVA immobilized cells revealed that the quinoline removal ratio was above 97% within 8 h under the conditions of pH neutral, 37 °C when the initial quinoline concentration was 300 mg/L.


Assuntos
Ochrobactrum/química , Ochrobactrum/metabolismo , Quinolinas/metabolismo , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Biodegradação Ambiental , Células Imobilizadas/química , Células Imobilizadas/metabolismo , Nanopartículas/química , Álcool de Polivinil/química , Quinolinas/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/metabolismo , Óxido de Zinco/química
13.
Int J Mol Sci ; 19(12)2018 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-30562938

RESUMO

The freezing tolerance of roots is crucial for winter turnip rape (Brassica rapa L.) survival in the winter in Northwest China. Cold acclimation (CA) can alleviate the root damage caused by freezing stress. To acknowledge the molecular mechanisms of freezing tolerance in winter turnip rape, two Brassica rapa genotypes, freezing stressed after the induction of cold acclimation, were used to compare the proteomic profiles of roots by isobaric tags for relative and absolute quantification (iTRAQ). Under freezing stress (-4 °C) for 8 h, 139 and 96 differentially abundant proteins (DAPs) were identified in the roots of "Longyou7" (freezing-tolerant) and "Tianyou4" (freezing-sensitive), respectively. Among these DAPs, 91 and 48 proteins were up- and down-accumulated in "Longyou7", respectively, and 46 and 50 proteins were up- and down-accumulated in "Tianyou4", respectively. Under freezing stress, 174 DAPs of two varieties were identified, including 9 proteins related to ribosome, 19 DAPs related to the biosynthesis of secondary metabolites (e.g., phenylpropanoid and the lignin pathway), and 22 down-accumulated DAPs enriched in oxidative phosphorylation, the pentose phosphate pathway, fructose and mannose metabolism, alpha-linolenic acid metabolism, carbon fixation in photosynthetic organisms, ascorbate and aldarate metabolism. The expressional pattern of the genes encoding the 15 significant DAPs were consistent with the iTRAQ data. This work indicates that protein biosynthesis, lignin synthesis, the reduction of energy consumption and a higher linolenic acid content contribute to the freezing tolerance of winter turnip rape. Functional analyses of these DAPs would be helpful in dissecting the molecular mechanisms of the stress responses in B. rapa.


Assuntos
Brassica rapa/metabolismo , Resposta ao Choque Frio/fisiologia , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Proteômica , Brassica rapa/genética , Congelamento , Proteínas de Plantas/genética , Raízes de Plantas/genética , Especificidade da Espécie
14.
Int J Mol Sci ; 19(11)2018 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-30373160

RESUMO

Winter turnip rape (Brassica rapa L.) is a large-scale winter-only oil crop cultivated in Northwest China. However, its cold-resistant molecular mechanism remains inadequate. Studying the cold adaptation mechanisms of winter turnip rape based on the proteomic technique of isobaric tags for relative and absolute quantification (iTRAQ) offers a solution to this problem. Under cold stress (-4 °C for eight hours), 51 and 94 differently accumulated proteins (DAPs) in Longyou 7 (cold-tolerant) and Tianyou 4 (cold-sensitive) were identified, respectively. These DAPs were classified into 38 gene ontology (GO) term categories, such as metabolic process, cellular process, catalytic activity, and binding. The 142 DAPs identified between the two cold-stressed cultivars were classified into 40 GO terms, including cellular process, metabolic process, cell, catalytic activity, and binding. Kyoto Encyclopedia of Genes and Genomes enrichment analysis indicated that the DAPs participated in 10 pathways. The abundance of most protein functions in ribosomes, carbon metabolism, photosynthesis, and energy metabolism including the citrate cycle, pentose phosphate pathway, and glyoxylate and dicarboxylate metabolism decreased, and the proteins that participate in photosynthesis⁻antenna and isoflavonoid biosynthesis increased in cold-stressed Longyou 7 compared with those in cold-stressed Tianyou 4. The expression pattern of genes encoding the 10 significant DAPs was consistent with the iTRAQ data. This study provides new information on the proteomic differences between the leaves of Longyou 7 and Tianyou 4 plants and explains the possible molecular mechanisms of cold-stress adaptation in B. rapa.


Assuntos
Brassica rapa/fisiologia , Resposta ao Choque Frio , Redes e Vias Metabólicas , Proteínas de Plantas/metabolismo , Brassica rapa/genética , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Proteínas de Plantas/genética , Proteômica/métodos
15.
Molecules ; 23(7)2018 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-30037115

RESUMO

Brassica napus L. is rich in phenolic components and it has natural antioxidant characteristics which are important to human health. In the present study, the total phenolic and flavonoid contents of developing seeds of yellow- and black-seeded B. napus were compared. Both phenolic and flavonoid contents were significantly higher at 5 weeks after flowering (WAF) in black seeds (6.44 ± 0.97 mg EE/g phenolics and 3.78 ± 0.05 mg EE/g flavonoids) than yellow seeds (2.80 ± 0.13 mg/g phenolics and 0.83 ± 0.01 mg/g flavonoids). HPLC⁻DAD⁻ESI/MS analysis revealed different content of 56 phenolic components between yellow and black-seeded B. napus, including kaempferol-3-O-glucoside, isorhamnetin-3-O-glucoside, quercetin-3-O-sophoroside, procyanidin B2 ([DP 2]), which were significantly reduced in yellow seeds compared with black seeds. Applying the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical assay, we found maximum clearance of DPPH and ABTS in the late developmental stages of yellow and black seeds. Additionally, the ferric reducing antioxidant power (FRAP) value maximized at 5 WAF in black seeds (432.52 ± 69.98 µmol Fe (II)/g DW) and 6 WAF in yellow seeds (274.08 ± 2.40 µmol Fe (II)/g DW). Generally, antioxidant ability was significantly reduced in yellow-seeded B. napus compared to black rapeseed, and positive correlations between antioxidation and flavonoid content were found in both yellow- and black-seeded B. napus.


Assuntos
Antioxidantes/química , Antioxidantes/farmacologia , Brassica napus/química , Fenóis/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Sementes/química , Cromatografia Líquida de Alta Pressão , Flavonoides/química , Espectrometria de Massas por Ionização por Electrospray
16.
BMC Plant Biol ; 15: 22, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-25623840

RESUMO

BACKGROUND: Brassica includes many successfully cultivated crop species of polyploid origin, either by ancestral genome triplication or by hybridization between two diploid progenitors, displaying complex repetitive sequences and transposons. The U's triangle, which consists of three diploids and three amphidiploids, is optimal for the analysis of complicated genomes after polyploidization. Next-generation sequencing enables the transcriptome profiling of polyploids on a global scale. RESULTS: We examined the gene expression patterns of three diploids (Brassica rapa, B. nigra, and B. oleracea) and three amphidiploids (B. napus, B. juncea, and B. carinata) via digital gene expression analysis. In total, the libraries generated between 5.7 and 6.1 million raw reads, and the clean tags of each library were mapped to 18547-21995 genes of B. rapa genome. The unambiguous tag-mapped genes in the libraries were compared. Moreover, the majority of differentially expressed genes (DEGs) were explored among diploids as well as between diploids and amphidiploids. Gene ontological analysis was performed to functionally categorize these DEGs into different classes. The Kyoto Encyclopedia of Genes and Genomes analysis was performed to assign these DEGs into approximately 120 pathways, among which the metabolic pathway, biosynthesis of secondary metabolites, and peroxisomal pathway were enriched. The non-additive genes in Brassica amphidiploids were analyzed, and the results indicated that orthologous genes in polyploids are frequently expressed in a non-additive pattern. Methyltransferase genes showed differential expression pattern in Brassica species. CONCLUSION: Our results provided an understanding of the transcriptome complexity of natural Brassica species. The gene expression changes in diploids and allopolyploids may help elucidate the morphological and physiological differences among Brassica species.


Assuntos
Brassica/genética , Diploide , Regulação da Expressão Gênica de Plantas , Poliploidia , Brassica/enzimologia , Análise por Conglomerados , Perfilação da Expressão Gênica , Biblioteca Gênica , Ontologia Genética , Genes de Plantas , Metiltransferases/genética , Metiltransferases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
17.
Molecules ; 20(12): 21204-13, 2015 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-26633322

RESUMO

Breeding of yellow-seeded rapeseed (Brassica napus) is preferred over black-seeded rapeseed for the desirable properties of the former. This study evaluated the metabolites and nutritive values of black-seeded rapeseed meal and yellow-seeded meal from the progeny of a B. napus-Sinapis alba hybrid. Yellow-seed meal presented higher protein (35.46% vs. 30.29%), higher sucrose (7.85% vs. 7.29%), less dietary fiber (26.19% vs. 34.63%) and crude fiber (4.56% vs. 8.86%), and less glucosinolates (22.18 vs. 28.19 µmol/g) than black-seeded one. Amounts of ash (3.65% vs. 4.55%), phytic acid (4.98% vs. 5.60%), and total polyphenols (2.67% vs. 2.82%) were decreased slightly in yellow-seeded meal compared with black-seeded meal. Yellow-seeded meal contained more essential amino acids than black-seeded meal. Levels of the mineral elements Fe, Mn, and Zn in yellow-seeded meal were higher than black-seeded meal. By contrast, levels of P, Ca, and Mg were lower in yellow-seeded meal. Moreover, yellow-seeded meal showed lower flavonol (kaempferol, quercetin, isorhamnetin, and their derivatives) content than black-seeded meal. Comparison of metabolites between yellow and black rapeseed confirmed the improved nutritional value of meal from yellow-seeded B. napus, and this would be helpful to the breeding and improvement of rapeseed for animal feeding.


Assuntos
Brassica napus/metabolismo , Dieta , Polifenóis/metabolismo , Sementes/classificação , Sementes/metabolismo , Sinapis/metabolismo , Valor Nutritivo
18.
Cell Immunol ; 287(2): 86-90, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24487031

RESUMO

Several studies have shown that N-methyl-D-aspartate (NMDA)-receptor activation in anterior cingulate cortex (ACC) neurons plays critical roles in modulating visceral pain responses in visceral hypersensitivity (VH) rats. However, there are few reports about the expressions of NMDA and α-amino-3-hydroxy-5-methyl-4-isox-azolepropionic-acid (AMPA) receptor subtypes in ACC of VH model rats at different time points. The current study was undertaken to investigate NR2A, NR2B and GluR2 expressions in ACC of VH rats that were induced by administration with 5% mustard oil. Our results indicated that NR2B, but not NR2A, was highly expressed in VH model group on day 15, 22, and 36 compared with normal group (p < 0.05). GluR2 expression was also higher in VH model group on day 15, 22, and 36 than that of normal group (p < 0.05). These findings suggested increased expression of NR2B and GluR2 might be key mechanisms for long-term synaptic plastic changes in VH rats.


Assuntos
Hipersensibilidade/metabolismo , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Dor Visceral/metabolismo , Administração Retal , Animais , Animais Recém-Nascidos , Células Cultivadas , Modelos Animais de Doenças , Giro do Cíngulo/metabolismo , Humanos , Mostardeira , Plasticidade Neuronal , Óleos de Plantas/administração & dosagem , Ratos , Ratos Sprague-Dawley , Transdução de Sinais
19.
PeerJ ; 12: e16703, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38188138

RESUMO

Background: PM2.5 is a well-known harmful air pollutant that can lead to acute exacerbation and aggravation of respiratory diseases. Although ferroptosis is involves in the pathological process of pulmonary disease, the potential mechanism of ferroptosis in PM2.5-caused lung inflammation and fibrosis need to be further clarified. Quercetin is a phenolic compound that can inhibit ferroptosis in various diseases. Hence, this study explores the role of ferroptosis in lung injury induced by PM2.5 in order to further elucidate the beneficial effect of quercetin and its underlying mechanism. Methods: C57BL/6J mice were treated with either saline or PM2.5 by intratracheal instillation 20 times (once every two days). Additionally, PM2.5-treated mice were supplemented with two doses of quercetin. Lung injury, lipid peroxidation, iron content and ferroptosis marker protein expression and the Nrf2 signaling pathway were evaluated. In vitro, cell experiments were applied to verify the mechanisms underlying the links between Nrf2 signaling pathway activation and ferroptosis as well as between ferroptosis and inflammation. Results: In vivo, PM2.5 increased lung inflammation and caused lung fibrosis and increased lipid peroxidation contents, iron contents and ferroptosis markers in lung tissues; these effects were significantly reversed by quercetin. Additionally, quercetin upregulated the nuclear Nrf2 expression and downregulated Keap1 expression in lung tissues of PM2.5-exposed mice. Quercetin decreased lipid peroxidation products, iron contents and ferroptosis levels and increased the nuclear translocation of Nrf2 and the degradation of Keap1 in PM2.5-exposed BEAS-2B cells. Moreover, we found that quercetin and dimethyl fumarate markedly decreased lipid peroxidation production and ferroptosis by activating the Nrf2-Keap1 pathway in PM2.5-exposed cells. Furthermore, quercetin reduced inflammatory cytokines and TGF-ß1 in PM2.5-exposed cells. Conclusion: Our data suggested that Nrf2 is involved in ferroptosis in PM2.5-induced lung injury, and quercetin can alleviate these adverse effects via activating Nrf2-Keap1 signaling pathway.


Assuntos
Ferroptose , Lesão Pulmonar , Pneumonia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Lesão Pulmonar/induzido quimicamente , Quercetina/farmacologia , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2 , Ferro , Material Particulado/efeitos adversos
20.
J Ethnopharmacol ; 321: 117405, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37952734

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Allergic asthma is a recurring respiratory condition that typically manifests during childhood or adolescence. It is characterized by a dominant type II immune response triggered by the identification and capturing of inhaled allergens by dendritic cells (DCs). Jiangqi Pingxiao Formula (JQPXF), a prescription medicine used for the treatment of pediatric asthma, has been clinically proven to be both safe and effective. However, its mechanism of action in the treatment of asthma has not been fully been fully elucidated. Recent research suggests that several natural compounds have the potential to target dendritic cells (DCs) and alleviate ovalbumin (OVA)-induced asthma, which may also be found within JQPXF. AIM OF THE STUDY: This study aimed to elucidate the effect of JQPXF on OVA-induced asthma model and its molecular mechanism targeting DCs. MATERIALS AND METHODS: The main constituents of JQPXF were analyzed by ultra performance liquid chromatography (UPLC). An asthma model was established by OVA. Hematoxylin-eosin staining and measurement of respiratory function was used to evaluate the treatment effect of JQPXF on asthmatic mice. Cytokine (IL-5, IL-13 and IgE) concentrations were determined by enzyme-linked immunosorbent assay (ELISA). Flow cytometry was employed to evaluate inflammatory cell infiltration (T helper 2 cells and DCs) in vivo and DC survival in vivo and vitro. Western blot and immunofluorescence were used to verify the molecular mechanisms. RESULTS: The results suggest that JQPXF can ameliorate pathological conditions and improve lung function in asthmatic mice, as well as the Th2 cells. Treatment with JQPXF significantly reduced the number of DCs and increased the number of Propidium iodide+ (PI) DCs. Furthermore, JQPXF upregulated protein levels of the pro-apoptotic factors Cleaved-caspase-3 and Bax, while downregulating the anti-apoptotic factor Bcl-2. Simultaneously, JQPXF increased autophagy levels by facilitating p62 degradation and promoting translation from LC3B I to LC3B II of DCs in vitro, as well as reducing the integrated optical density (IOD) of p62 within the CD11c-positive area in the lung. 3-Methyladenine (3-MA) was used to block autophagic flux and the apoptotic effect of JQPXF on DCs was abolished in vitro, with the number of DCs decreased by JQPXF being reversed in vivo. We further investigated the upstream key regulator of autophagy, the AMPK/mTOR pathway, and found that JQPXF increased AMPK phosphorylation while decreasing mTOR phosphorylation levels. Additionally, we employed Compound C (CC) as an AMPK inhibitor to inhibit this signaling pathway, and our findings revealed that both autophagic flux and apoptotic levels in DCs were abolished in vitro. CONCLUSIONS: In summary, we have demonstrated that JQPXF could alleviate type II inflammation in an asthmatic model by promoting the apoptosis of DCs through an autophagy-dependent mechanism, achieved by regulating the AMPK/mTOR signaling pathway.


Assuntos
Proteínas Quinases Ativadas por AMP , Asma , Humanos , Criança , Camundongos , Animais , Ovalbumina , Proteínas Quinases Ativadas por AMP/metabolismo , Modelos Animais de Doenças , Asma/induzido quimicamente , Asma/tratamento farmacológico , Serina-Treonina Quinases TOR/metabolismo , Autofagia , Células Dendríticas , Apoptose , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA