Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Genomics ; 113(3): 1193-1202, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33711456

RESUMO

Cardisoma armatum is a typical member of the Gecarcinidae which show significant behavioral, morphological, physiological, and/or biochemical adaptations permitting extended activities on the land. The special gills (branchiostegal lung) of C. armatum play an important role in maintaining osmotic pressure balance and obtaining oxygen to adapt to the terrestrial environment. However, adaptive molecular mechanisms responding to air exposure in C. armatum are still poorly understood. In this study, transcriptomic analysis and histological analysis were conducted on the gills to test adaptive capabilities over 8 h between the aerial exposure (AE) and the water immersion (WI) group. Differentially expressed genes (DEGs) related to terrestrial adaptation were categorized into four broad categories: ion transport, acid-base balance, energy metabolism and immune response. This is the first research to reveal the molecular mechanism of terrestrial adaptation in C. armatum, and will provide new insight into the molecular genetic basis of terrestrial adaptation in crabs.


Assuntos
Braquiúros , Transcriptoma , Adaptação Fisiológica/genética , Animais , Braquiúros/genética , Perfilação da Expressão Gênica , Brânquias/metabolismo
2.
Sci Total Environ ; 919: 170652, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38331282

RESUMO

The prevalence of harmful algal blooms (HABs), especially in mariculture waters, has become a concern for environmental and human health worldwide. Notably, the frequent occurrence of HABs relies upon a substantial supply of available nutrients, which are influenced by nutrient recycling. However, nutrient regeneration, transformation pattern, and their contribution to HABs in mariculture waters remain largely unknown. In this study, by combining field investigation and incubation experiments from June to September 2020, the temporal variations in nutrients and algal composition were revealed. In addition, the nutrient regeneration and assimilation rates in the water column during two continuous algal blooms were measured. The results indicated that organic nutrients, which were the dominant components, strongly stimulated nutrient regeneration. High regeneration rates were observed, with dissolved inorganic nitrogen (DIN) and phosphorous (DIP) regeneration rates ranging from 0.25 to 2.64 µmol/L·h and 0.01 to 0.09 µmol/L·h, respectively. Compared to the direct uptake of organic nutrients, the rapid regeneration of inorganic nutrients played a vital role in sustaining continuous algal blooms, as regenerated DIN contributed 100 % while regenerated DIP contributed 72-100 % of the algal assimilation demand. Furthermore, the redundancy analysis and inverse solution equations indicated that different N transformation patterns and utilization strategies occurred during Heterosigma and Nannochloris blooms. The shorter N recycling pathway and faster NH4+ supply rates provided favorable conditions for the dominance of Nannochloris over Heterosigma, which had a preference for the uptake of NO3-. In conclusion, we propose that nutrient regeneration is a key maintenance mechanism underlying the maintenance of continuous algal blooms, and different N transformation patterns and utilization strategies regulate algal communities in mariculture waters.


Assuntos
Proliferação Nociva de Algas , Água , Humanos , Nutrientes/análise , Nitrogênio/análise , Fósforo/análise
3.
Chemosphere ; 362: 142668, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38906188

RESUMO

Harmful algal blooms (HABs), especially those caused by toxic dinoflagellates, are spreading in marine ecosystems worldwide. Notably, the prevalence of Karenia brevis blooms and potent brevetoxins (BTXs) pose a serious risk to public health and marine ecosystems. Therefore, developing an environmentally friendly method to effectively control HABs and associated BTXs has been the focus of increasing attention. As a promising method, modified clay (MC) application could effectively control HABs. However, the environmental fate of BTXs during MC treatment has not been fully investigated. For the first time, this study revealed the effect and mechanism of BTX removal by MC from the perspective of adsorption and transformation. The results indicated that polyaluminium chloride-modified clay (PAC-MC, a typical kind of MC) performed well in the adsorption of BTX2 due to the elevated surface potential and more binding sites. The adsorption process was a spontaneous endothermic process that conformed to pseudo-second-order adsorption kinetics (k2 = 6.8 × 10-4, PAC-MC = 0.20 g L-1) and the Freundlich isotherm (Kf = 55.30, 20 °C). In addition, detailed product analysis using liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) indicated that PAC-MC treatment effectively removed the BTX2 and BTX3, especially those in the particulate forms. Surprisingly, PAC-MC could promote the transformation of BTX2 to derivatives, including OR-BTX2, OR-BTX3, and OR-BTX-B5, which were proven to have lower cytotoxicity.

4.
Environ Pollut ; 289: 117964, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34426199

RESUMO

For many years, the dispersal of modified clay (MC) has been used to control harmful algal blooms (HABs) in coastal waters of China. MC flocculation efficiency can be influenced by many factors in variable and complex natural environments, including high concentrations of dissolved organic matter (DOM) in the water to be treated. Since many HABs occur in nearshore waters where DOM concentrations are high, this is a significant problem that requires urgent attention. This study involved the use of humic acid as a representative form of DOM to study the influence of organic matter on the MC flocculation process. At high concentrations, humic acid was adsorbed onto MC particles, resulting in a decrease in surface potential and an increase in electrostatic repulsion between the clay particles; this decreased the MC settling rate and increased the water clarification time. Flocs were characterized by their relatively small particle size, high particle concentration, and low collision efficiency, which together resulted in slow clarification of the water after MC spraying. Based on the mechanism of the DOM-MC interaction and combined with the Derjaguin-Landau-Verwey-Overbeek theory and theoretical considerations of clay surface modification, the "ionic atmosphere compression" method was used to improve MC flocculation efficiency in high-organic water. This method increased the ionic strength of the clay stock solution by adding salt, thereby compressing the ionic atmosphere of MC particles and lowering the potential barrier, allowing the MC particles in the treated water to flocculate rapidly and form large flocs, followed by further floc growth and rapid settling via differential sedimentation. The settling rate of MCs improved by a factor of two and the removal efficiency of the HAB cells increased by 7-28%. This study provides important baseline information that will extend the application of MC to HAB control in water bodies with high organic loadings.


Assuntos
Proliferação Nociva de Algas , Substâncias Húmicas , China , Argila , Floculação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA