Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neuroimage ; 272: 120050, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36963740

RESUMO

Using task-dependent neuroimaging techniques, recent studies discovered a fraction of patients with disorders of consciousness (DOC) who had no command-following behaviors but showed a clear sign of awareness as healthy controls, which was defined as cognitive motor dissociation (CMD). However, existing task-dependent approaches might fail when CMD patients have cognitive function (e.g., attention, memory) impairments, in which patients with covert awareness cannot perform a specific task accurately and are thus wrongly considered unconscious, which leads to false-negative findings. Recent studies have suggested that sustaining a stable functional organization over time, i.e., high temporal stability, is crucial for supporting consciousness. Thus, temporal stability could be a powerful tool to detect the patient's cognitive functions (e.g., consciousness), while its alteration in the DOC and its capacity for identifying CMD were unclear. The resting-state fMRI (rs-fMRI) study included 119 participants from three independent research sites. A sliding-window approach was used to investigate global and regional temporal stability, which measured how stable the brain's functional architecture was across time. The temporal stability was compared in the first dataset (36/16 DOC/controls), and then a Support Vector Machine (SVM) classifier was built to discriminate DOC from controls. Furthermore, the generalizability of the SVM classifier was tested in the second independent dataset (35/21 DOC/controls). Finally, the SVM classifier was applied to the third independent dataset, where patients underwent rs-fMRI and brain-computer interface assessment (4/7 CMD/potential non-CMD), to test its performance in identifying CMD. Our results showed that global and regional temporal stability was impaired in DOC patients, especially in regions of the cingulo-opercular task control network, default-mode network, fronto-parietal task control network, and salience network. Using temporal stability as the feature, the SVM model not only showed good performance in the first dataset (accuracy = 90%), but also good generalizability in the second dataset (accuracy = 84%). Most importantly, the SVM model generalized well in identifying CMD in the third dataset (accuracy = 91%). Our preliminary findings suggested that temporal stability could be a potential tool to assist in diagnosing CMD. Furthermore, the temporal stability investigated in this study also contributed to a deeper understanding of the neural mechanism of consciousness.


Assuntos
Encéfalo , Inconsciência , Humanos , Encéfalo/diagnóstico por imagem , Cognição , Estado de Consciência , Transtornos da Consciência , Imageamento por Ressonância Magnética/métodos
2.
J Neurotrauma ; 41(15-16): e1976-e1985, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38517097

RESUMO

The potential influence of pituitary-related hormones (including both pituitary gland and target gland hormones) on functional recovery after traumatic brain injury has been observed. However, the relationship between these hormones and the recovery of consciousness in patients with disorders of consciousness (DOC) remains unclear. In this retrospective and observational study, 208 patients with DOC were recruited. According to the Glasgow Outcome Scale (GOS) scores after 6 months, patients with DOC were categorized into two subgroups: a favorable prognosis subgroup (n = 38) comprising those who regained consciousness (GOS score ≥3), and a poor prognosis subgroup (n = 156) comprising those who remained in DOC (GOS score <3). Comparative analyses of pituitary-related hormone levels between the two subgroups were conducted. Further, a binary logistic regression analysis was conducted to assess the predictive value of pituitary-related hormones for the patients' prognosis. The favorable prognosis subgroup showed a significant increase in adrenocorticotropic hormone (ACTH) levels (p = 0.036). Moreover, higher ACTH levels and shorter days since injury were significantly associated with a better prognosis, with odds ratios (ORs) of 0.928 (95% confidence interval [CI] = 0.873-0.985, p = 0.014) and 1.015 (95% CI = 1.005-1.026, p = 0.005), respectively. A subsequent receiver operating characteristic (ROC) analysis demonstrated the potential to predict patients' prognosis with an area under the curve value of 0.78, an overall accuracy of 75.5%, a sensitivity of 77.5%, and a specificity of 66.7%. Our findings indicate that ACTH levels could serve as a clinically valuable and convenient predictor for patients' prognosis.


Assuntos
Hormônio Adrenocorticotrópico , Transtornos da Consciência , Recuperação de Função Fisiológica , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Transtornos da Consciência/sangue , Transtornos da Consciência/diagnóstico , Adulto , Estudos Retrospectivos , Hormônio Adrenocorticotrópico/sangue , Recuperação de Função Fisiológica/fisiologia , Idoso , Prognóstico , Valor Preditivo dos Testes , Lesões Encefálicas Traumáticas/sangue , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/diagnóstico , Adulto Jovem , Escala de Resultado de Glasgow
3.
Brain Sci ; 13(5)2023 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-37239303

RESUMO

The self has been proposed to be grounded in interoceptive processing, with heartbeat-evoked cortical activity as a neurophysiological marker of this processing. However, inconsistent findings have been reported on the relationship between heartbeat-evoked cortical responses and self-processing (including exteroceptive- and mental-self-processing). In this review, we examine previous research on the association between self-processing and heartbeat-evoked cortical responses and highlight the divergent temporal-spatial characteristics and brain regions involved. We propose that the brain state relays the interaction between self-processing and heartbeat-evoked cortical responses and thus accounts for the inconsistency. The brain state, spontaneous brain activity which highly and continuously changes in a nonrandom way, serves as the foundation upon which the brain functions and was proposed as a point in an extremely high-dimensional space. To elucidate our assumption, we provide reviews on the interactions between dimensions of brain state with both self-processing and heartbeat-evoked cortical responses. These interactions suggest the relay of self-processing and heartbeat-evoked cortical responses by brain state. Finally, we discuss possible approaches to investigate whether and how the brain state impacts the self-heart interaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA