Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Langmuir ; 40(14): 7569-7580, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38544311

RESUMO

A La-doped Ti/SnO2-Sb2O4 electrode with TiO2-NTs intermediate layer (Ti/TiO2-NTs/SnO2-Sb2O4-La) was created via the electrodeposition technique. The physicochemical and electrochemical properties of the electrode were analyzed through FESEM, XRD, XPS, CV, and LSV electrochemical tests. The results showed that TiO2-NTs were tightly packed on the surface of Ti substrate, thus improving the binding force of the SnO2-Sb2O4-La coating, offering greater specific surface area, more active spots, higher current response, and longer lifespan for the degradation of rhodamine B. The lifespan of the Ti/TiO2-NTs/SnO2-Sb2O4-La electrode reached 200 min (1000 mA cm-2, 1 M H2SO4), while the actual service life was up to 3699 h. Under the conditions of initial pH 3.0, Na2SO4 concentration of 0.1 M, current density of 30 mA cm-2, and initial rhodamine B concentration of 20 mg L-1, the color and TOC removal rate of rhodamine B reached 100% and 86.13% within 15 and 30 min, respectively. Rhodamine B was decomposed into acids, esters, and other molecular compounds under the action of •OH and SO4•- free radicals and electrocatalysis, and finally completely mineralized into CO2 and H2O. It is anticipated that this work will yield a novel research concept for producing DSA electrodes with superior catalytic efficacy and elevated stability.

2.
Reprod Biomed Online ; 48(5): 103697, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38430661

RESUMO

RESEARCH QUESTION: What is the role of Prader-Willi region non-protein coding RNA 1 (PWRN1) in ovarian follicular development and its molecular mechanism? DESIGN: The expression and localization of PWRN1 were detected in granulosa cells from patients with different ovarian functions, and the effect of interfering with PWRN1 expression on cell function was detected by culturing granulosa cells in vitro. Furthermore, the effects of interfering with PWRN1 expression on ovarian function of female mice were explored through in-vitro and in-vivo experiments. RESULTS: The expression of PWRN1 was significantly lower in granulosa cells derived from patients with diminished ovarian reserve (DOR) compared with patients with normal ovarian function. By in-vitro culturing of primary granulosa cells or the KGN cell line, the results showed that the downregulation of PWRN1 promoted granulosa cell apoptosis, caused cell cycle arrested in S-phase, generated high levels of autophagy and led to significant decrease in steroidogenic capacity, including inhibition of oestradiol and progesterone production. In addition, SIRT1 overexpression could partially reverse the inhibitory effect of PWRN1 downregulation on cell proliferation. The results of in-vitro culturing of newborn mouse ovary showed that the downregulation of PWRN1 could slow down the early follicular development. Further, by injecting AAV-sh-PWRN1 in mouse ovarian bursa, the oestrous cycle of mouse was affected, and the number of oocytes retrieved after ovulation induction and embryos implanted after mating was significantly reduced. CONCLUSION: This study systematically elucidated the novel mechanism by which lncRNA PWRN1 participates in the regulation of granulosa cell function and follicular development.


Assuntos
Células da Granulosa , Folículo Ovariano , RNA Longo não Codificante , Feminino , Células da Granulosa/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Animais , Camundongos , Folículo Ovariano/metabolismo , Humanos , Reserva Ovariana , Apoptose , Proliferação de Células , Adulto
3.
Environ Sci Pollut Res Int ; 31(14): 21632-21645, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38393556

RESUMO

In this paper, La-doped Ti/SnO2-Sb2O4 electrode was prepared by electrodeposition and used for electrochemical degradation of rhodamine B. The optimum preparation conditions of the electrode were optimized as deposition time of 15 min and calcination at 500 ℃ for 2 h. The water treatment conditions were selected as initial pH 3.0, electrolyte Na2SO4 concentration 0.1 M, current density 30 mA cm-2, and initial rhodamine B concentration 20 mg L-1; the color and TOC removal of RhB reached 99.78% and 82.41% within 30 min. The FESEM, XRD, XPS, CV, LSV, and EIS characterization studies demonstrated that Ti/SnO2-Sb2O4-1%La electrode had a dense structure and the highest oxygen evolution potential (2.14 V) and lowest charge transfer resistance (0.198 Ω cm-2), indicating that doped La has lower energy consumption. Moreover, La doping can expand the specific surface area, active site, performance of pollutant degradation, and service life of the electrode. Especially, the service life of Ti/SnO2-Sb2O4-1%La is increased by three times, and the maximum life span reaches 90 min (1000 mA cm-2, 1 M H2SO4). Free radical quenching experiments show that ·OH plays a major role in the degradation of RhB. The Ti/SnO2-Sb2O4-1%La electrode prepared in this paper and its results will provide data support and reference for the design of efficient electrocatalytic electrode.


Assuntos
Titânio , Titânio/química , Oxirredução , Rodaminas , Eletrodos
4.
Int J Biol Macromol ; 278(Pt 1): 134352, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39094868

RESUMO

Peroxymonosulfate (PMS), which is dominated by free radical (SO4•-) pathway, has a good removal effect on organic pollutants in complex water matrices. In this article, a new catalyst (CFM@NC) was synthesized by hydrothermal carbonization method with chitosan (CS) as N and C precursors, and used to activate PMS to degrade dye wastewater. CFM@NC/PMS system can degrade 50 mg·L-1 rhodamine B by 99.59 % within 30 min, and the degradation rate remains as high as 97.32 % after 5 cycles. It has good complex background matrices, acid-base anti-interference ability (pH 2.6-10.1), universality and reusability. It can degrade methyl orange and methylene blue by >98 % within 30 min. The high efficiency of the composite is due to the fact that CS-modified MoS2 as a carrier exposes a large number of active sites, which not only disperses CuFe2O4 nanoparticles and improves the stability of the catalyst, but also provides abundant electron rich groups, which promotes the activation of PMS and the production of reactive oxygen species (ROS). PMS is effectively activated by catalytic sites (Cu+/Cu2+, Fe2+/Fe3+, Mo4+/Mo6+, pyridine N, pyrrole N, edge sulfur and hydroxyl group) to produce a large number of radicals to attack RhB molecules, causing chromophore cleavage, ring opening, and mineralization. Among them, free radical SO4•- is the main ROS for RhB degradation. This work is expected to provide a new idea for the design and synthesis of environmentally friendly and efficient heterogeneous catalysts.

5.
Int J Biol Macromol ; 265(Pt 2): 130519, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38553393

RESUMO

Peroxymonosulfate (PMS), which is dominated by non-free radical pathway, has a good removal effect on organic pollutants in complex water matrices. In this article, a biodegradable cobalt-based catalyst (Co3O4/MoS2@NCS) was synthesized by a simple hydrothermal method with chitosan (CS) as nitrogen­carbon precursor and doped with Cobaltic­cobaltous oxide (Co3O4) and Molybdenum disulfide (MoS2), and was used to activate PMS to degrade dye wastewater. Electrochemical tests showed that Co3O4/MoS2@NCS exhibited higher current density and cycling area than MoS2@NCS and MoS2. In the Co3O4/MoS2@NCS/PMS system, the degradation rate of 30 mg·L-1 rhodamine B (RhB) reached 97.75 % within 5 min, and kept as high as 94.34 % after 5 cycles. Its rate constant was 1.91 and 8.37 times that of MoS2@NCS/PMS and MoS2/PMS, respectively. It had good complex background matrices and acid-base anti-interference ability, and had good universality and reusability. The degradation rate of methyl orange (MO) and methylene blue (MB) were more than 91 % within 5 min at pH 4.8. The experimental results demonstrated that MoS2-modified CS as a carrier exposed a large number of active sites, which not only dispersed Co3O4 nanoparticles and improved the stability of the catalyst, but also provided abundant electron rich groups, and promoted the activation of PMS and the production of reactive oxygen species (ROS). PMS was effectively activated by catalytic sites (Co3+/Co2+, Mo4+/Mo5+/Mo6+, CO, pyridine N, pyrrole N, hydroxyl group and unsaturated sulfur), producing a large number of radicals that attack RhB molecules, causing chromophore cleavage, ring opening, and mineralization. Among them, non-free radical 1O2 was the main ROS for RhB degradation. This work is expected to provide a new idea for the design and synthesis of environmentally friendly and efficient MoS2-modified cobalt-based catalysts.


Assuntos
Carbono , Quitosana , Óxidos , Peróxidos , Carbono/química , Espécies Reativas de Oxigênio/química , Molibdênio/química , Cobalto/química
6.
Mol Cell Endocrinol ; 592: 112322, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38942281

RESUMO

Polycystic ovary syndrome (PCOS) is a type of follicular dysplasia with an unclear pathogenesis, posing certain challenges in its diagnosis and treatment. Cancer susceptibility candidate 15 (CASC15), a long non-coding RNA closely associated with tumour development, has been implicated in PCOS onset and development. Therefore, this study aimed to investigate the molecular mechanisms underlying PCOS by downregulating CASC15 expression in both in vitro and in vivo models. We explored the potential regulatory relationship between CASC15 expression and PCOS by examining cell proliferation, cell cycle dynamics, cell autophagy, steroid hormone secretion capacity, and overall ovarian function in mice. We found that CASC15 expression in granulosa cells derived from patients with PCOS was significantly higher than those of the normal group (P < 0.001). In vitro experiments revealed that downregulating CASC15 significantly inhibited cell proliferation, promoted apoptosis, induced G1-phase cell cycle arrest, and influenced cellular autophagy levels. Moreover, downregulating CASC15 affected the follicular development process in newborn mouse ovaries. In vivo studies in mice demonstrated that disrupting CASC15 expression improved PCOS-related symptoms such as polycystic changes and hyperandrogenism, and significantly affected ovulation induction and embryo implantation in pregnant mice. Overall, CASC15 was highly expressed in granulosa cells of patients with PCOS and its downregulation improved PCOS-related symptoms by influencing granulosa cell function and follicular development in mice.

7.
ACS Appl Mater Interfaces ; 16(14): 18164-18172, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38556998

RESUMO

The interface between the electrochromic (EC) electrode and ionic conductor is crucial for high-performance and extraordinarily stable EC devices (ECDs). Herein, the effect of the ALD-AZO interfacial layer on the performance of the WO3 thin film was examined, revealing that an introduction of the ALD-AZO interfacial layer to the Al3+-based complementary ECDs can lead to improved EC performance and stability, such as an extraordinary cyclability of more than 20,000 cycles, an outstanding coloration efficiency of 109.69 cm2 C-1, and a maximum transmittance modulation of 63.44%@633 nm. The probable explanation is that the introduced ALD-AZO interfacial layer can effectively regulate the band gap of WO3, promote the electron transport process, and induce the formation of a robust solid electrolyte interphase to protect the electrode during cycling. These findings offer valuable insights for enhancing the EC performance of the EC thin films and new space for the construction of advanced multivalent Al3+-based ECDs.

8.
Mol Cell Oncol ; 11(1): 2309715, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38343433

RESUMO

Breast cancer was considered as a kind of prone breast tumors with the complicated pathological mechanisms and diverse clinical classifications. In the clinical treatments of HER2-positive tumor patients, HER2 monoclonal antibodies, such as Herceptin, have shown well-defined therapeutic effects. Nevertheless, due to the heterogeneity of breast cancers, drug resistance inevitably appeared during the application of Herceptin. In order to fully understand the immune tolerance status of the tumor microenvironment in the population of sensitive and insensitive patients, this study carried out a series of studies through Luminex cytokines assay, clinicopathological analysis, immunofluorescence, and PCR. The results confirmed that in clinical samples sensitive to Herceptin, there were a large number of macrophages, and the protein expression levels and in situ expression of macrophage-related chemokines and inflammatory mediators are significantly higher than drug-resistant tumor samples. Further studies found that T cell function has a low correlation with tumor growth, and there are obvious obstacles in the process of peripheral blood immune cells entering the tumor microenvironment. In summary, this study provided clues for understanding the clinical drug resistance of HER2 monoclonal antibody and the clinical rational use of drugs and combination drugs.

9.
Front Neurol ; 15: 1423569, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39131045

RESUMO

Background: Previous observational clinical studies and meta-analyses have yielded inconsistent results regarding the relationship between vitamin D and headache, and the causal relationship remains unclear. The aim of this study was to investigate the causal relationship between vitamin D and headache by bidirectional two-sample Mendelian randomisation (MR) analysis. Methods: The relationship between high levels of vitamin D and headache was investigated by two-sample MR analysis using publicly available genome-wide association study (GWAS) data. The primary method was inverse variance weighting (IVW), and secondary methods were weighted median and MR-Egger methods. No heterogeneity or horizontal multidirectionality was found in the MR results. The robustness and validity of the findings were assessed using the leave-behind method. Results: A significant causal relationship was found between high vitamin D levels and headache using the IVW method (OR = 0.848; p = 0.007; 95% CI = 0.752-0.956). However, in a reverse analysis, no evidence of a causal relationship between headache and high levels of vitamin D was found using the IVW method (OR = 1.001; p = 0.906; 95% CI = 0.994-1.006). Our MR analyses showed no significant horizontal multidimensionality or heterogeneity (p > 0.05). Sensitivity analyses confirmed that MR estimates were not affected by single nucleotide polymorphisms (SNPs). Confirmation that our results are robust and valid has been obtained by the leave-one-out method. Conclusion: Our study suggests that high levels of vitamin D prevent the risk of headache. However, there is no evidence of a causal relationship between headache and high levels of vitamin D. Vitamin D may reduce the risk of headache.

10.
Nat Commun ; 15(1): 3185, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609368

RESUMO

Conventional liquid-phase methods lack precise control in synthesizing and processing materials with macroscopic sizes and atomic thicknesses. Water interfaces are ubiquitous and unique in catalyzing many chemical reactions. However, investigations on two-dimensional (2D) materials related to water interfaces remain limited. Here we report the growth of millimeter-sized 2D PbI2 single crystals at the water-air interface. The growth mechanism is based on an inherent ion-specific preference, i.e. iodine and lead ions tend to remain at the water-air interface and in bulk water, respectively. The spontaneous accumulation and in-plane arrangement within the 2D crystal of iodide ions at the water-air interface leads to the unique crystallization of PbI2 as well as other metal iodides. In particular, PbI2 crystals can be customized to specific thicknesses and further transformed into millimeter-sized mono- to few-layer perovskites. Additionally, we have developed water-based techniques, including water-soaking, spin-coating, water-etching, and water-flow-assisted transfer to recycle, thin, pattern, and position PbI2, and subsequently, perovskites. Our water-interface mediated synthesis and processing methods represents a significant advancement in achieving simple, cost-effective, and energy-efficient production of functional materials and their integrated devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA