Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Biomed Res Int ; 2022: 2743679, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35937384

RESUMO

Background: Time in range (TIR) is one of the basic indicators to assess glycemic control. In this study, the TIR of DPN patients was used as the observation index to further evaluate the correlation between TIR and DPN, so as to provide new ideas for preventing the occurrence of DPN and delaying its disease progression. Methods: A total of 120 patients with T2DM (T2DM) who were hospitalized in the Endocrinology Department of our hospital from October 2018 to February 2020 were included and divided into two groups according to whether the nerve conduction velocity was normal or not, the diabetic peripheral neuropathy group (DPN) and the other groups. No diabetic peripheral neuropathy group (NDPN). According to the corresponding inclusion and exclusion criteria, the baseline data were recorded, and test indicators such as homocysteine and blood lipids were collected at the same time, and TIR was collected by a transient blood glucose meter. To explore the relationship between TIR and other indicators and peripheral neuropathy in T2DM. Results: A total of 120 T2DM patients participated in the study, including 82 in the DPN group and 38 in the NDPN group. There were no statistically significant differences in basic indicators such as age, height, and weight between the two groups. Glycated hemoglobin (HbA1c) and homocysteine (Hcy) in DPN group were higher than those in NDPN group, while TIR and HDL-C were lower than those in NDPN group (P < 0.05). Logistic regression analysis showed that HbA1c and Hcy were risk factors for DPN, and TIR and HDL-C were protective factors for DPN, with statistical significance (P < 0.05). The prediction results of TIR, Hcy, HDL-C, and HbA1c on diabetic peripheral neuropathy were analyzed by ROC curve, and the prediction results of the five variables were all statistically significant (P < 0.05) and have a better prediction effect. Conclusion: (1) The results of TIR level suggest that the longer the blood sugar is in the good control range, the more beneficial it is to reduce the occurrence of DPN. (2) TIR and HDL-C are protective factors for DPN, and HbA1c and Hcy are risk factors for DPN. (3) The results of ROC curve analysis showed that TIR, Hcy, HbA1c, and HDL-C had a good predictive effect on the occurrence of DPN.


Assuntos
Diabetes Mellitus Tipo 2 , Neuropatias Diabéticas , Humanos , Glicemia/análise , Hemoglobinas Glicadas/análise , Homocisteína , Estudos Retrospectivos
2.
Nat Neurosci ; 25(12): 1693-1705, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36446934

RESUMO

Animals learn trajectories to rewards in both spatial, navigational contexts and relational, non-navigational contexts. Synchronous reactivation of hippocampal activity is thought to be critical for recall and evaluation of trajectories for learning. Do hippocampal representations differentially contribute to experience-dependent learning of trajectories across spatial and relational contexts? In this study, we trained mice to navigate to a hidden target in a physical arena or manipulate a joystick to a virtual target to collect delayed rewards. In a navigational context, calcium imaging in freely moving mice revealed that synchronous CA1 reactivation was retrospective and important for evaluation of prior navigational trajectories. In a non-navigational context, reactivation was prospective and important for initiation of joystick trajectories, even in the same animals trained in both contexts. Adaptation of trajectories to a new target was well-explained by a common learning algorithm in which hippocampal activity makes dissociable contributions to reinforcement learning computations depending upon spatial context.


Assuntos
Hipocampo , Navegação Espacial , Animais , Camundongos , Estudos Prospectivos , Estudos Retrospectivos , Rememoração Mental
3.
Elife ; 82019 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-30604680

RESUMO

Optical imaging has become a powerful tool for studying brains in vivo. The opacity of adult brains makes microendoscopy, with an optical probe such as a gradient index (GRIN) lens embedded into brain tissue to provide optical relay, the method of choice for imaging neurons and neural activity in deeply buried brain structures. Incorporating a Bessel focus scanning module into two-photon fluorescence microendoscopy, we extended the excitation focus axially and improved its lateral resolution. Scanning the Bessel focus in 2D, we imaged volumes of neurons at high-throughput while resolving fine structures such as synaptic terminals. We applied this approach to the volumetric anatomical imaging of dendritic spines and axonal boutons in the mouse hippocampus, and functional imaging of GABAergic neurons in the mouse lateral hypothalamus in vivo.


Assuntos
Encéfalo/metabolismo , Espinhas Dendríticas/metabolismo , Microscopia de Fluorescência/métodos , Sinapses/metabolismo , Animais , Axônios/metabolismo , Encéfalo/citologia , Encéfalo/diagnóstico por imagem , Feminino , Neurônios GABAérgicos/metabolismo , Hipocampo/citologia , Hipocampo/diagnóstico por imagem , Hipocampo/metabolismo , Hipotálamo/citologia , Hipotálamo/diagnóstico por imagem , Hipotálamo/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência/instrumentação
4.
Biomed Opt Express ; 6(11): 4546-56, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26601017

RESUMO

The ability to image neurons anywhere in the mammalian brain is a major goal of optical microscopy. Here we describe a minimally invasive microendoscopy system for studying the morphology and function of neurons at depth. Utilizing a guide cannula with an ultrathin wall, we demonstrated in vivo two-photon fluorescence imaging of deeply buried nuclei such as the striatum (2.5 mm depth), substantia nigra (4.4 mm depth) and lateral hypothalamus (5.0 mm depth) in mouse brain. We reported, for the first time, the observation of neuronal activity with subcellular resolution in the lateral hypothalamus and substantia nigra of head-fixed awake mice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA