RESUMO
The developing brain is uniquely susceptible to oxidative stress, and endogenous antioxidant mechanisms are not sufficient to prevent injury from a hypoxic-ischemic challenge. Glutathione peroxidase (GPX1) activity reduces hypoxic-ischemic injury. Therapeutic hypothermia (HT) also reduces hypoxic-ischemic injury, in the rodent and the human brain, but the benefit is limited. Here, we combined GPX1 overexpression with HT in a P9 mouse model of hypoxia-ischemia (HI) to test the effectiveness of both treatments together. Histological analysis showed that wild-type (WT) mice with HT were less injured than WT with normothermia. In the GPX1-tg mice, however, despite a lower median score in the HT-treated mice, there was no significant difference between HT and normothermia. GPX1 protein expression was higher in the cortex of all transgenic groups at 30 min and 24 h, as well as in WT 30 min after HI, with and without HT. GPX1 was higher in the hippocampus of all transgenic groups and WT with HI and normothermia, at 24 h, but not at 30 min. Spectrin 150 was higher in all groups with HI, while spectrin 120 was higher in HI groups only at 24 h. There was reduced ERK1/2 activation in both WT and GPX1-tg HI at 30 min. Thus, with a relatively moderate insult, we see a benefit with cooling in the WT but not the GPX1-tg mouse brain. The fact that we see no benefit with increased GPx1 here in the P9 model (unlike in the P7 model) may indicate that oxidative stress in these older mice is elevated to an extent that increased GPx1 is insufficient for reducing injury. The lack of benefit of overexpressing GPX1 in conjunction with HT after HI indicates that pathways triggered by GPX1 overexpression may interfere with the neuroprotective mechanisms provided by HT.
Assuntos
Hipotermia Induzida , Hipotermia , Hipóxia-Isquemia Encefálica , Animais , Camundongos , Humanos , Animais Recém-Nascidos , Espectrina , Hipóxia-Isquemia Encefálica/patologia , Hipóxia , Glutationa Peroxidase/metabolismo , Antioxidantes , IsquemiaRESUMO
Hypoxic-ischemic encephalopathy (HIE) is a common neurological syndrome in newborns with high mortality and morbidity. Therapeutic hypothermia (TH), which is standard of care for HIE, mitigates brain injury by suppressing anaerobic metabolism. However, more than 40% of HIE neonates have a poor outcome, even after TH. This study aims to provide metabolic biomarkers for predicting the outcomes of hypoxia-ischemia (HI) after TH using hyperpolarized [1-13C] pyruvate magnetic resonance spectroscopy. Postnatal day 10 (P10) mice with HI underwent TH at 1 h and were scanned at 6-8 h (P10), 24 h (P11), 7 days (P17), and 21 days (P31) post-HI on a 14.1-T NMR spectrometer. The metabolic images were collected, and the conversion rate from pyruvate to lactate and the ratio of lactate to pyruvate in the injured left hemisphere (kPL(L) and Lac/Pyr(L), respectively) were calculated at each timepoint. The outcomes of TH were determined by the assessments of brain injury on T2-weighted images and behavioral tests at later timepoint. kPL(L) and Lac/Pyr(L) over time between the good-outcome and poor-outcome groups and across timepoints within groups were analyzed. We found significant differences in temporal trends of kPL(L) and Lac/Pyr(L) between groups. In the good-outcome group, kPL(L) increased until P31 with a significantly higher value at P31 compared with that at P10, while the level of Lac/Pyr(L) at P31 was notably higher than those at all other timepoints. In the poor-outcome group, kPL(L) and Lac/Pyr(L) increased within 24 h. The kPL(L) value at P11 was considerably higher compared with P10. Discrete temporal changes of kPL(L) and Lac/Pyr(L) after TH between the good-outcome and poor-outcome groups were seen as early as 24 h after HI, reflecting various TH effects on brain anaerobic metabolism, which may provide insights for early screening for response to TH.
Assuntos
Encéfalo , Hipotermia Induzida , Hipóxia-Isquemia Encefálica , Ácido Pirúvico , Animais , Hipóxia-Isquemia Encefálica/metabolismo , Hipóxia-Isquemia Encefálica/terapia , Hipóxia-Isquemia Encefálica/diagnóstico por imagem , Ácido Pirúvico/metabolismo , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Camundongos , Camundongos Endogâmicos C57BL , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Espectroscopia de Ressonância Magnética , Masculino , Isótopos de CarbonoRESUMO
Larix olgensis is an economically important tree species native to northeastern China. The use of somatic embryogenesis (SE) is efficient and enables the rapid production of varieties with desirable qualities. Here, isobaric labeling via tandem mass tags was used to conduct a large-scale quantitative proteomic analysis of proteins in three critically important stages of SE in L. olgensis: the primary embryogenic callus, the single embryo, and the cotyledon embryo. We identified 6269 proteins, including 176 shared differentially expressed proteins across the three groups. Many of these proteins are involved in glycolipid metabolism, hormone response/signal transduction, cell synthesis and differentiation, and water transport; proteins involved in stress resistance and secondary metabolism, as well as transcription factors, play key regulatory roles in SE. The results of this study provide new insights into the key pathways and proteins involved in SE in Larix. Our findings have implications for the expression of totipotency, the preparation of synthetic seeds, and genetic transformation.
RESUMO
KEY MESSAGE: The fusion gene 4CL-CCR promotes lignification and activates lignin-related MYB expression in tobacco but inhibits auxin-related gene expression and hinders the auxin absorption of cells. Given the importance of lignin polymers in plant growth and their industrial value, it is necessary to investigate how plants synthesize monolignols and regulate the level of lignin in cell walls. In our previous study, expression of the Populus tomentosa fusion gene 4CL-CCR significantly promoted the production of 4-hydroxycinnamyl alcohols. However, the function of 4CL-CCR in organisms remains poorly understood. In this study, the fusion gene 4CL-CCR was heterologously expressed in tobacco suspension cells. We found that the transgenic suspension cells exhibited lignification earlier. Furthermore, 4CL-CCR significantly reduced the content of phenolic acids and increased the content of aldehydes in the medium, which led to an increase in lignin deposition. Moreover, transcriptome results showed that the genes related to lignin synthesis, such as PAL, 4CL, CCoAOMT and CAD, were significantly upregulated in the 4CL-CCR group. The expression of genes related to auxin, such as ARF3, ARF5 and ARF6, was significantly downregulated. The downregulation of auxin affected the expression of transcription factor MYBs. We hypothesize that the upregulated genes MYB306 and MYB315 are involved in the regulation of cell morphogenesis and lignin biosynthesis and eventually enhance lignification in tobacco suspension cells. Our findings provide insight into the function of 4CL-CCR in lignification and how secondary cell walls are formed in plants.
Assuntos
Lignina , Nicotiana , Lignina/genética , Plantas Geneticamente Modificadas/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Regulação da Expressão Gênica de PlantasRESUMO
Apple is one of the most important fruit crops in temperate regions and largely relies on cutting propagation. Adventitious root formation is crucial for the success of cutting propagation. Strigolactones have been reported to function in rooting of woody plants. In this study, we determined that strigolactones have inhibitory effects on adventitious root formation in apple. Transcriptome analysis identified 12 051 differentially expressed genes over the course of adventitious root initiation, with functions related to organogenesis, cell wall biogenesis or plant development. Further analysis indicated that strigolactones might inhibit adventitious root formation through repressing two core hub genes, MdLAC3 and MdORE1. Combining small RNA and degradome sequencing, as well as dual-luciferase sensor assays, we identified and validated three negatively correlated miRNA-mRNA pairs, including mdm-miR397-MdLAC3 and mdm-miR164a/b-MdORE1. Overexpression of mdm-miR164b and silencing MdORE1 exhibited enhanced adventitious root formation in tobacco and apple, respectively. Finally, we verified the role of mdm-miR164b-MdORE1 in strigolactone-mediated repression of rooting ability. Overall, the identified comprehensive regulatory network in apple not only provides insight into strigolactone-mediated adventitious root formation in other woody plants, but also points to a potential strategy for genetic improvement of rooting capacity in woody plants.
Assuntos
Malus , Malus/genética , Raízes de Plantas , Lactonas/farmacologia , Compostos Heterocíclicos com 3 Anéis/farmacologia , Regulação da Expressão Gênica de PlantasRESUMO
The cellular responses to hypoxia or hypoxia-ischemia (HI) are governed largely by the hypoxia-inducible factor (HIF) family of transcription factors. Our previous studies show that HIF-1α induction is an important factor that mediates protective effects in the brain after neonatal HI. In the present study, we investigated the contribution of another closely related HIF α isoform, HIF-2α, specifically the neuronal HIF-2α, to brain HI injury. Homozygous transgenic mice with a floxed exon 2 of HIF-2α were bred with CaMKIIα-Cre mice to generate a mouse line with selective deletion of HIF-2α in forebrain neurons. These mice, along with their wildtype littermates, were subjected to HI at postnatal day 9. Brain injury at different ages was evaluated by the levels of cleaved caspase-3 and spectrin breakdown products at 24 hr; and histologically at 6 days or 3 months after HI. Multiple behavioral tests were performed at 3 months, prior to sacrifice. Loss of neuronal HIF-2α exacerbated brain injury during the acute (24 hr) and subacute phases (6 days), with a trend toward more severe volume loss in the adult brain. The long-term brain function for coordinated movement and recognition memory, however, were not impacted in the neuronal HIF-2α deficient mice. Our data suggest that, similar to HIF-1α, neuronal HIF-2α promotes cell survival in the immature mouse brain. The two HIF alpha isoforms may act through partially overlapping or distinct transcriptional targets to mediate their intrinsic protective responses against neonatal HI brain injury.
Assuntos
Lesões Encefálicas , Neurônios , Animais , Animais Recém-Nascidos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Lesões Encefálicas/metabolismo , Hipóxia/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Camundongos , Camundongos Transgênicos , Neurônios/metabolismoRESUMO
Caffeoyl shikimate esterase (CSE) hydrolyzes caffeoyl shikimate into caffeate and shikimate in the phenylpropanoid pathway. In this study, we performed a systematic analysis of the CSE gene family and investigated the possible roles of CSE and CSE-like genes in Populus. We conducted a genome-wide analysis of the CSE gene family, including functional and phylogenetic analyses of CSE and CSE-like genes, using the poplar (Populus trichocarpa) genome. Eighteen CSE and CSE-like genes were identified in the Populus genome, and five phylogenetic groups were identified from phylogenetic analysis. CSEs in Group Ia, which were proposed as bona fide CSEs, have probably been lost in most monocots except Oryza sativa. Primary functional classification showed that PoptrCSE1 and PoptrCSE2 had putative function in lignin biosynthesis. In addition, PoptrCSE2, along with PoptrCSE12, might also respond to stress with a function in cell wall biosynthesis. Enzymatic assay of PoptoCSE1 (Populus tomentosa), -2 and -12 showed that PoptoCSE1 and -2 maintained CSE activity. PoptoCSE1 and 2 had similar biochemical properties, tissue expression patterns and subcellular localization. Most of the PoptrCSE-like genes are homologs of AtMAGL (monoacylglycerol lipase) genes in Arabidopsis and may function as MAG lipase in poplar. Our study provides a systematic understanding of this novel gene family and suggests the function of CSE in monolignol biosynthesis in Populus.
Assuntos
Hidrolases de Éster Carboxílico/genética , Populus/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Expressão Gênica/genética , Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas/genética , Estudo de Associação Genômica Ampla , Lignina/genética , Lignina/metabolismo , Filogenia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Populus/crescimento & desenvolvimentoRESUMO
Dehydrins (DHN) belong to the late embryogenesis abundant II family and have been found to enhance plant tolerance to abiotic stress. In the present study, we reported four DHNs in Larix kaempferi (LkDHN) which were identified from the published transcriptome. Alignment analysis showed that these four LkDHNs shared close relationships and belonged to SK3-type DHNs. The electrophoretic mobility shift assay indicated that these four LkDHNs all possess sequence-independent binding capacity for double-strands DNAs. The subcellular localizations of the four LkDHNs were in both the nucleus and cytoplasm, indicating that these LkDHNs enter the nucleus to exert the ability to bind DNA. The preparation of tobacco protoplasts with different concentrations of mannitol showed that LkDHNs enhanced the tolerance of plant cells under osmotic stress. The overexpression of LkDHNs in yeasts enhanced their tolerance to osmotic stress and helped the yeasts to survive severe stress. In addition, LkDHNs in the nucleus of salt treated tobacco increased. All of these results indicated that the four LkDHNs help plants survive from heavy stress by participating in DNA protection. These four LKDHNs played similar roles in the response to osmotic stress and assisted in the adaptation of L. kaempferi to the arid and cold winter of northern China.
Assuntos
Adaptação Fisiológica , Larix/fisiologia , Proteínas de Plantas/metabolismo , Núcleo Celular , Citoplasma , DNA/metabolismo , Secas , Larix/citologia , Pressão Osmótica , Proteínas de Plantas/genética , Protoplastos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Estresse Fisiológico , NicotianaRESUMO
Although exogenous applications of gibberellins (GAs) delay tomato ripening, the regulatory mechanisms of GAs in the process have never been well recognized. Here, we report that the concentration of endogenous GAs is declined before the increase of ethylene production in mature-green to breaker stage fruits. We further demonstrate that reductions in GA levels via overexpression of a GA catabolism gene SlGA2ox1 specifically in fruit tissues lead to early ripening. Consistently, we have also observed that application of a GA biosynthetic inhibitor, prohexadione-calcium, at the mature-green stage accelerates fruit ripening, while exogenous GA3 application delays the process. Furthermore, we demonstrate that ethylene biosynthetic gene expressions and ethylene production are activated prematurely in GA-deficient fruits but delayed/reduced in exogenous GA3-treated WT fruits. We also show that the GA deficiency-mediated activation of ethylene biosynthesis is due to the activation of the ripening regulator genes RIN, NOR and CNR. In conclusion, our results demonstrate that GAs play a negative role in tomato fruit ripening.
Assuntos
Frutas/crescimento & desenvolvimento , Giberelinas/fisiologia , Reguladores de Crescimento de Plantas/fisiologia , Solanum lycopersicum/crescimento & desenvolvimento , Etilenos/biossíntese , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Genes de Plantas/fisiologiaRESUMO
Hypoxia-inducible factor 1α (HIF1α) is a key regulator of oxygen homeostasis, and its target genes mediate adaptive, protective, and pathological processes. The role of HIF1α in neuronal survival is controversial and the brain maturation stage is important in determining its function in brain ischemia or hypoxia-ischemia (HI). In this study, we used neuron-specific HIF1α knockout mice at postnatal day 9 (P9), and immature cortical neurons (days 7-8 in vitro) treated with the HIF1α inhibitor 2-methoxyestradiol (2ME2) or stabilizer dimethyloxalylglycine (DMOG), to examine the function of neuronal HIF1α in neonatal HI in vivo (Vannucci model) and in vitro (oxygen glucose deprivation, OGD). Inhibition of HIF1α with 2ME2 in primary neurons or deletion of neuronal HIF1α in P9 mice increased both necrotic and apoptotic cell death following HI, as evaluated by the protein levels of 145/150-kDa and 120-kDa spectrin breakdown products 24 h after HI. DMOG attenuated neuronal death right after OGD. Acute pharmacological manipulation of HIF1α synchronously regulated the expression of its targets, vascular endothelial growth factor (VEGF) and erythropoietin (Epo), in the same manner. The in vivo findings agree with our previous data using the same HIF1α-deficient mice at an earlier age. This study confirms the role of neuronal HIF1α signaling in the endogenous protective responses following HI in the developing brain.
RESUMO
BACKGROUND: The development and ripening of fresh fruits is an important trait for agricultural production and fundamental research. Almost all plant hormones participate in this process. Strigolactones (SLs) are a new class of plant hormones that regulate plant organ development and stress tolerance, but little is known about their roles in fruit development. RESULTS: In this study, we identified SL biosynthetic and signaling genes in woodland strawberry, a typical non-climacteric fruit, and analyzed the expression patterns of these genes in different plant tissues and developing fruits. One D27, two MAX1, and one LBO gene were identified as involved in SL biosynthesis, and one D14, one D3, and two D53 genes as related to SL signaling. The proteins encoded by these genes had similar motifs as SL biosynthetic and signaling proteins in rice and Arabidopsis. The genes had different expression levels in the root, stem, leaf, and petiole of woodland strawberry. In addition, the expression of most SL biosynthetic genes was high in developing carpel, anther, and style, while that of SL signaling genes was high in carpel and style, but low in anther, suggesting active SL biosynthesis and signaling in the developing carpel and style. Notably, the expression of SL biosynthetic and signaling genes was significantly increased in the receptacle after pollination and decreased during receptacle development. Moreover, low or no expression of these genes was detected in ripening fruits. CONCLUSIONS: Our results suggest that SLs play a role in the early stages of woodland strawberry fruit development. Our findings provide insight into the function of SLs and will facilitate further study of the regulation by SLs of fresh fruit development.
Assuntos
Fragaria/genética , Regulação da Expressão Gênica de Plantas , Lactonas/metabolismo , Proteínas de Plantas/metabolismo , Transdução de Sinais , Fragaria/crescimento & desenvolvimento , Fragaria/metabolismo , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Proteínas de Plantas/genéticaRESUMO
Caffeoyl shikimate esterase (CSE) has been reported to be involved in lignin biosynthesis; however, studies of CSE in gymnosperms are lacking. In this study, CSE was successfully cloned from Larix kaempferi (LkCSE) based on Larix laricina transcriptome screening. LkCSE was likely to have catalytic activity based on homologous sequence alignment and phylogenetic analyses of CSEs from different species. In vitro assays with the recombinant enzyme validated the catalytic activity of LkCSE, indicating its function in converting caffeoyl shikimate into caffeate and shikimate. Additionally, the optimum reaction pH and temperature of LkCSE were determined to be 6.0 and 30 °C, respectively. The values of Km and Vmax of CSE for caffeoyl shikimate were 98.11 µM and 14.44 nM min-1, respectively. Moreover, LkCSE was observed to have tissue expression specificity and was abundantly expressed in stems and leaves, especially stems, which was 50 times higher than the expression levels of roots. Lastly, translational fusion assays using LkCSE fused with green fluorescent proteins (GFP) in tobacco leaves indicated that LkCSE was localized in the plasma membrane and endoplasmic reticulum (ER). These results revealed that CSE clearly functions in gymnosperms and it is possible for LkCSE to interact with other ER-resident proteins and regulate mass flux in the monolignol biosynthesis pathway.
Assuntos
Proteínas de Arabidopsis/química , Hidrolases de Éster Carboxílico/química , Larix/enzimologia , Lignina/biossíntese , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Hidrolases de Éster Carboxílico/genética , Cycadopsida/enzimologia , Cycadopsida/genética , Regulação da Expressão Gênica de Plantas , Larix/genética , Lignina/genética , Filogenia , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Ácido Chiquímico/químicaRESUMO
BackgroundMaintenance of cholesterol homeostasis is crucial for brain development. Brain cholesterol relies on de novo synthesis and is cleared primarily by conversion to 24S-hydroxycholesterol (24S-HC) with brain-specific cholesterol 24-hydroxylase (CYP46A1). We aimed to investigate the impact of hypoxia-ischemia (HI) on brain cholesterol metabolism in the neonatal mice.MethodsPostnatal day 9 C57BL/6 pups were subjected to HI using the Vannucci model. CYP46A1 expression was assessed with western blotting and its cellular localization was determined using immunofluorescence staining. The amount of brain cholesterol, 24S-HC in the cortex and in the serum, was measured with enzyme-linked immunosorbent assay (ELISA).ResultsThere was a transient cholesterol loss at 6 h after HI. CYP46A1 was significantly upregulated at 6 and 24 h following HI with a concomitant increase of 24S-HC in the ipsilateral cortex and in the serum. The serum levels of 24S-HC correlated with those in the brain, as well as with necrotic and apoptotic cell death evaluated by the expression of spectrin breakdown products and cleaved caspase-3 at 6 and 24 h after HI.ConclusionEnhanced cholesterol turnover by activation of CYP46A1 represents disrupted brain cholesterol homeostasis early after neonatal HI. 24S-HC might be a novel blood biomarker for severity of hypoxic-ischemic encephalopathy with potential clinical application.
Assuntos
Encéfalo/metabolismo , Colesterol 24-Hidroxilase/metabolismo , Colesterol/metabolismo , Regulação Enzimológica da Expressão Gênica , Hipóxia-Isquemia Encefálica/patologia , Animais , Animais Recém-Nascidos , Biomarcadores/metabolismo , Encéfalo/crescimento & desenvolvimento , Córtex Cerebral/metabolismo , Ensaio de Imunoadsorção Enzimática , Hidroxicolesteróis/química , Hipóxia , Hipóxia-Isquemia Encefálica/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Oligodendroglia/metabolismo , Regulação para CimaRESUMO
Proteomics of the synapses and postsynaptic densities (PSDs) have provided a deep understanding of protein composition and signal networks in the adult brain, which underlie neuronal plasticity and neurodegenerative or psychiatric disorders. However, there is a paucity of knowledge about the architecture and organization of PSDs in the immature brain, and how it is modified by brain injury in an early developing stage. Mass spectrometry (MS)-based proteomic analysis was performed on PSDs prepared from cortices of postnatal day 9 naïve mice or pups which had suffered hypoxic-ischemic (HI) brain injury. 512 proteins of different functional groups were identified from PSDs collected 1 h after HI injury, among which 60 have not been reported previously. Seven newly identified proteins involved in neural development were highlighted. HI injury increased the yield of PSDs at early time points upon reperfusion, and multiple proteins were recruited into PSDs following the insult. Quantitative analysis was performed using spectral counting, and proteins whose relative expression was more than 50% up- or downregulated compared to the sham animals 1 h after HI insult were reported. Validation with Western blotting demonstrated changes in expression and phosphorylation of the N-methyl-D-aspartate receptor, activation of a series of postsynaptic protein kinases and dysregulation of scaffold and adaptor proteins in response to neonatal HI insult. This work, along with other recent studies of synaptic protein profiling in the immature brain, builds a foundation for future investigation on the molecular mechanisms underlying developing plasticity. Furthermore, it provides insights into the biochemical changes of PSDs following early brain hypoxia-ischemia, which is helpful for understanding not only the injury mechanisms, but also the process of repair or replenishment of neuronal circuits during recovery from brain damage.
Assuntos
Asfixia Neonatal/patologia , Córtex Cerebral/patologia , Hipóxia-Isquemia Encefálica/patologia , Densidade Pós-Sináptica/patologia , Animais , Animais Recém-Nascidos , Asfixia Neonatal/metabolismo , Córtex Cerebral/metabolismo , Feminino , Humanos , Hipóxia-Isquemia Encefálica/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Densidade Pós-Sináptica/metabolismo , ProteômicaRESUMO
MAIN CONCLUSION: Two distinct cinnamoyl-coenzyme A reductases (CCRs) from Populus tomentosa were cloned and studied and active sites in CCRs were further identified based on sequence divergence, molecular simulation, and site-directed mutants. Cinnamoyl-coenzyme A (CoA) reductase (CCR) is the first committed gene in the lignin-specific pathway and plays a role in the lignin biosynthesis pathway. In this study, we cloned 11 genes encoding CCR or CCR-like proteins in Populus tomentosa. An enzymatic assay of the purified recombinant P. tomentosa (Pto) CCR and PtoCCR-like proteins indicated that only PtoCCR1 and PtoCCR7 had detectable activities toward hydroxycinnamoyl-CoA esters. PtoCCR1 exhibited specificity for feruloyl-CoA, with no detectable activity for any other hydroxycinnamoyl-CoA esters. However, PtoCCR7 catalyzed p-coumaroyl-CoA, caffeoyl-CoA, feruloyl-CoA, and sinapoyl-CoA with a preference for feruloyl-CoA. Site-directed mutations of selected amino acids divergent between PtoCCR1 and 7, combined with modeling and docking, showed that A132 in CCR7 combined with the catalytic triad might comprise the catalytic center. In CCR7, L192, F155, and H208 were identified as the substrate-binding sites, and site-directed mutations of these amino acids showed obvious changes in catalytic efficiency with respect to both feruloyl-CoA and sinapoyl-CoA. Mutant F155Y exhibited greater catalytic efficiency for sinapoyl-CoA compared with that of wild-type PtoCCR7. Finally, recent genome duplication events provided the foundation for CCR divergence. This study further identified the active sites in CCRs and the evolutionary process of CCRs in terrestrial plants.
Assuntos
Aldeído Oxirredutases/genética , Domínio Catalítico , Evolução Molecular , Família Multigênica , Populus/enzimologia , Populus/genética , Aldeído Oxirredutases/química , Sequência de Aminoácidos , Cromossomos de Plantas/genética , Sequência Conservada/genética , Ensaios Enzimáticos , Duplicação Gênica , Genes de Plantas , Concentração de Íons de Hidrogênio , Cinética , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Proteínas Mutantes/química , Filogenia , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , TemperaturaRESUMO
MAIN CONCLUSION: Two distinct cinnamoyl-coenzyme A reductases (CCRs) from Selaginella moellendorffii were evaluated, and of these, SmCCR2-1, which has both distinct sequence motifs and catalytic properties, was clustered into a new CCR subgroup. Cinnamoyl-coenzyme A reductases (CCRs) have been reported in many land plants to have critical functions in monolignol biosynthesis. In this study, we performed a genome-wide screen and obtained two distinct SmCCRs from S. moellendorffii. Phylogenetic analysis indicated that SmCCR2 (both SmCCR2-1 and 2-2) and SmCCR3 together with PpaCCR belong to a distinct subgroup of genuine CCRs with variations in the NAD(P)H-binding motif. Enzymatic assays showed detectable activity by both SmCCR1 and SmCCR2-1 toward four hydroxycinnamoyl-CoA esters. SmCCR1, which clustered with reported CCRs from angiosperms and gymnosperms, exhibited specificity toward feruloyl-CoA, while SmCCR2-1 showed a preference for sinapoyl-CoA. Interestingly, the reaction temperature profiles for SmCCR1 and SmCCR2-1 are complementary. Homology models and molecular simulations suggest that the variations in NADPH-binding motifs, especially R(X)6K instead of R(X)5K, affect the NADP+ conformation. Notably, the signature motif NWYCY was replaced with NGYCL in SmCCR1 and with EWYCL in SmCCR2-1, while the signature residues H202 and R253, reported in a previous study, were conserved in SmCCR1 and SmCCR2-1 but varied in SmCCR-like genes. It is likely that NWYCY is not a reliable signature for CCRs in plants. The detectable activity of site-direct mutant S123T of SmCCR1 suggested that S123 which consists of catalytic triad is changeable. Possible evolution process for the emergence of two subgroups of genuine CCRs was also revealed. Altogether, these findings revise our understanding of CCRs with regard to divergence and active sites.
Assuntos
Aldeído Oxirredutases/metabolismo , Proteínas de Plantas/metabolismo , Selaginellaceae/metabolismo , Aldeído Oxirredutases/genética , Evolução Molecular , Filogenia , Proteínas de Plantas/genética , Selaginellaceae/genética , Especificidade por Substrato/genéticaRESUMO
BACKGROUND: 4-Hydroxycinnamyl alcohols are a class of natural plant secondary metabolites that include p-coumaryl alcohol, caffeyl alcohol, coniferyl alcohol and sinapyl alcohol, and have physiological, ecological and biomedical significance. While it is necessary to investigate the biological pathways and economic value of these alcohols, research is hindered because of their limited availability and high cost. Traditionally, these alcohols are obtained by chemical synthesis and plant extraction. However, synthesis by biotransformation with immobilized microorganisms is of great interest because it is environmentally friendly and offers high stability and regenerable cofactors. Therefore, we produced 4-hydroxycinnamyl alcohols using immobilized whole cells of engineered Escherichia coli as the biocatalyst. RESULTS: In this study, we used the recombinant E. coli strain, M15-4CL1-CCR, expressing the fusion protein 4-coumaric acid: coenzyme A ligase and the cinnamoyl coenzyme A reductase and a recombinant E. coli strain, M15-CAD, expressing cinnamyl alcohol dehydrogenase from Populus tomentosa (P. tomentosa). High performance liquid chromatography and mass spectrometry showed that the immobilized whole cells of the two recombinant E. coli strains could effectively convert the phenylpropanoic acids to their corresponding 4-hydroxycinnamyl alcohols. Further, the optimum buffer pH and the reaction temperature were pH 7.0 and 30 °C. Under these conditions, the molar yield of the p-coumaryl alcohol, the caffeyl alcohol and the coniferyl alcohol was around 58, 24 and 60%, respectively. Moreover, the highly sensitive and selective HPLC-PDA-ESI-MSn method used in this study could be applied to the identification and quantification of these aromatic polymers. CONCLUSIONS: We have developed a dual-cell immobilization system for the production of 4-hydroxycinnamyl alcohols from inexpensive phenylpropanoic acids. This biotransformation method is both simple and environmental-friendly, which is promising for the practical and cost effective synthesis of natural products. Graphical abstract Biotransformation process of phenylpropanoic acids by immobilized whole-cells.
Assuntos
Oxirredutases do Álcool/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Engenharia Genética , Propanóis/metabolismo , Vias Biossintéticas , Células Imobilizadas/metabolismo , Escherichia coli/citologia , Propanóis/química , Proteínas Recombinantes/metabolismoRESUMO
BACKGROUND: Kudiezi (KDZ) injection is commonly used in traditional Chinese medicine as treatment for cerebral infarction and angina pectoris. The present study investigated the therapeutic effects of KDZ injection on myocardial injury induced by acute cerebral ischemia and the possibly protective mechanisms. METHODS: Rats were divided into three groups: sham, 6h-ischemia, and KDZ treatment (KDZ). The neurological deficits were determined by the Garcia score. The cerebral infarct volume was measured by 2,3,5-triphenyltetrazolium chloride (TTC) staining, and brain water content was also evaluated. Serum creatinine kinase (CK), lactate dehydrogenase (LDH), and creatine kinase-myocardial band (CK-MB) activity, myocardial tissue malondialdehyde (MDA) levels, L-Glutathione (GSH) levels, and superoxide dismutase (SOD) activity as well as mitochondrial cytochrome c oxidase (COX) activity were determined. Mitochondrial COX I and COX III mRNA expressions of myocardial tissues were measured by RT-PCR. RESULTS: Impaired neurological function and brain edema were observed in the 6h-ischemia group. TTC staining showed that the 6h-ischemia group had larger infarct zones than the sham group. Myocardial ischemic changes (widened myocardial cell gap, cracks, and obvious edema) were detected in the 6h-ischemia group compared with the sham group, with elevated serum CK-MB activity and CK and LDH levels. Electrocardiography showed lower medium frequency (MF) and high frequency (HF) in the 6h-ischemia group compared with the sham group. In myocardial tissue, COX activity was elevated in the 6h-ischemia compared with the sham group, while SOD, GSH, and MDA levels, and COX I and COX III mRNA expressions remained unchanged. KDZ injection decreased neurological impairment, brain edema, gaps between cells, and infarct size. Compared with the 6h-ischemia group, it reduced serum CK-MB activity and CK and LDH levels, and MDA levels in myocardial tissue. KDZ significantly increased GSH levels, SOD activity, and mitochondria COX activity and the expression of COX I and COX III mRNA in myocardial tissue compared with the sham group. CONCLUSION: KDZ injection had a protective effect against cerebral ischemia in rats. KDZ injection could also alleviate myocardial injury after acute cerebral ischemia in rats. The possible mechanisms involve the regulation of the oxidative stress/antioxidant capacity after cerebral ischemia.
Assuntos
Isquemia Encefálica/complicações , Medicamentos de Ervas Chinesas/administração & dosagem , Isquemia Miocárdica/tratamento farmacológico , Animais , Glutationa/metabolismo , Humanos , L-Lactato Desidrogenase/metabolismo , Masculino , Malondialdeído/metabolismo , Isquemia Miocárdica/etiologia , Isquemia Miocárdica/metabolismo , Estresse Oxidativo , Ratos , Ratos Sprague-Dawley , Superóxido Dismutase/metabolismoRESUMO
Advances in the study of brain development over the last decades, especially recent findings regarding the evolutionary expansion of the human neocortex, and large-scale analyses of the proteome/transcriptome in the human brain, have offered novel insights into the molecular mechanisms guiding neural maturation, and the pathophysiology of multiple forms of neurological disorders. As a preamble to reviews of this issue, we provide an overview of the cellular, molecular and genetic bases of brain development with an emphasis on the major mechanisms associated with landmarks of normal neural development in the embryonic stage and early postnatal life, including neural stem/progenitor cell proliferation, cortical neuronal migration, evolution and folding of the cerebral cortex, synaptogenesis and neural circuit development, gliogenesis and myelination. We will only briefly depict developmental disorders that result from perturbations of these cellular or molecular mechanisms, and the most common perinatal brain injuries that could disturb normal brain development.
Assuntos
Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Animais , Encéfalo/citologia , Humanos , Transtornos do Neurodesenvolvimento/metabolismoRESUMO
Microfilament and Ca(2+) dynamics play important roles in stress signaling in plants. Through genetic screening of Arabidopsis thaliana mutants that are defective in stress-induced increases in cytosolic Ca(2+) ([Ca(2+)]cyt), we identified Actin-Related Protein2 (Arp2) as a regulator of [Ca(2+)]cyt in response to salt stress. Plants lacking Arp2 or other proteins in the Arp2/3 complex exhibited enhanced salt-induced increases in [Ca(2+)]cyt, decreased mitochondria movement, and hypersensitivity to salt. In addition, mitochondria aggregated, the mitochondrial permeability transition pore opened, and mitochondrial membrane potential Ψm was impaired in the arp2 mutant, and these changes were associated with salt-induced cell death. When opening of the enhanced mitochondrial permeability transition pore was blocked or increases in [Ca(2+)]cyt were prevented, the salt-sensitive phenotype of the arp2 mutant was partially rescued. These results indicate that the Arp2/3 complex regulates mitochondrial-dependent Ca(2+) signaling in response to salt stress.