Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Planta ; 259(2): 50, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38285114

RESUMO

MAIN CONCLUSION: The oxidosqualene cyclases (OSCs) generating triterpenoid skeletons in Cyclocarya paliurus were identified for the first time, and two uridine diphosphate (UDP)-glycosyltransferases (UGTs) catalyzing the glycosylation of flavonoids were characterized. Cyclocarya paliurus, a native rare dicotyledonous plant in China, contains an abundance of triterpenoid saponins and flavonoid glycosides that exhibit valuable pharmaceutical effects in preventing hypertension, hyperlipidemia, and diabetes. However, the molecular mechanism explaining the biosynthesis of triterpenoid saponin and flavonoid glycoside in C. paliurus remains unclear. In this study, the triterpene content in different tissues and the expression pattern of genes encoding the key enzymes associated with triterpenoid saponin and flavonoid glycoside biosynthesis were studied using transcriptome and metabolome analysis. The eight upstream oxidosqualene cyclases (OSCs) involved in triterpenoid saponin biosynthesis were functionally characterized, among them CpalOSC6 catalyzed 2,3;22,23-dioxidosqualene to form 3-epicabraleadiol; CpalOSC8 cyclized 2,3-oxidosqualene to generate dammarenediol-II; CpalOSC2 and CpalOSC3 produced ß-amyrin and CpalOSC4 produced cycloartenol, while CpalOSC2-CpalOSC5, CpalOSC7, and CpalOSC8 all produced lanosterol. However, no catalytic product was detected for CpalOSC1. Moreover, two downstream flavonoid uridine diphosphate (UDP)-glycosyltransferases (UGTs) (CpalUGT015 and CpalUGT100) that catalyze the last step of flavonoid glycoside biosynthesis were functionally elucidated. These results uncovered the key genes involved in the biosynthesis of triterpenoid saponins and flavonoid glycosides in C. paliurus that could be applied to produce flavonoid glycosides and key triterpenoid saponins in the future via a synthetic strategy.


Assuntos
Saponinas , Esqualeno/análogos & derivados , Triterpenos , Glicosídeos , Flavonoides , Saponinas/genética , Glicosiltransferases , Difosfato de Uridina
2.
Pharmacol Res ; 201: 107090, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309381

RESUMO

Depression is a major global health issue that urgently requires innovative and precise treatment options. In this context, saikosaponin has emerged as a promising candidate, offering a variety of therapeutic benefits that may be effective in combating depression. This review delves into the multifaceted potential of saikosaponins in alleviating depressive symptoms. We summarized the effects of saikosaponins on structural and functional neuroplasticity, elaborated the regulatory mechanism of saikosaponins in modulating key factors that affect neuroplasticity, such as inflammation, the hypothalamic-pituitary-adrenal (HPA) axis, oxidative stress, and the brain-gut axis. Moreover, this paper highlights existing gaps in current researches and outlines directions for future studies. A detailed plan is provided for the future clinical application of saikosaponins, advocating for more targeted researches to speed up its transition from preclinical trials to clinical practice.


Assuntos
Ácido Oleanólico , Ácido Oleanólico/análogos & derivados , Saponinas , Depressão/tratamento farmacológico , Saponinas/farmacologia , Saponinas/uso terapêutico , Ácido Oleanólico/farmacologia , Ácido Oleanólico/uso terapêutico , Plasticidade Neuronal
3.
Clin Exp Pharmacol Physiol ; 51(8): e13907, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38965675

RESUMO

OBJECTIVE: Most cases of hepatocellular carcinoma (HCC) arise as a consequence of cirrhosis. In this study, our objective is to construct a comprehensive diagnostic model that investigates the diagnostic markers distinguishing between cirrhosis and HCC. METHODS: Based on multiple GEO datasets containing cirrhosis and HCC samples, we used lasso regression, random forest (RF)-recursive feature elimination (RFE) and receiver operator characteristic analysis to screen for characteristic genes. Subsequently, we integrated these genes into a multivariable logistic regression model and validated the linear prediction scores in both training and validation cohorts. The ssGSEA algorithm was used to estimate the fraction of infiltrating immune cells in the samples. Finally, molecular typing for patients with cirrhosis was performed using the CCP algorithm. RESULTS: The study identified 137 differentially expressed genes (DEGs) and selected five significant genes (CXCL14, CAP2, FCN2, CCBE1 and UBE2C) to construct a diagnostic model. In both the training and validation cohorts, the model exhibited an area under the curve (AUC) greater than 0.9 and a kappa value of approximately 0.9. Additionally, the calibration curve demonstrated excellent concordance between observed and predicted incidence rates. Comparatively, HCC displayed overall downregulation of infiltrating immune cells compared to cirrhosis. Notably, CCBE1 showed strong correlations with the tumour immune microenvironment as well as genes associated with cell death and cellular ageing processes. Furthermore, cirrhosis subtypes with high linear predictive scores were enriched in multiple cancer-related pathways. CONCLUSION: In conclusion, we successfully identified diagnostic markers distinguishing between cirrhosis and hepatocellular carcinoma and developed a novel diagnostic model for discriminating the two conditions. CCBE1 might exert a pivotal role in regulating the tumour microenvironment, cell death and senescence.


Assuntos
Biomarcadores Tumorais , Carcinoma Hepatocelular , Cirrose Hepática , Neoplasias Hepáticas , Aprendizado de Máquina , Humanos , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Cirrose Hepática/diagnóstico , Cirrose Hepática/genética , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Diagnóstico Diferencial , Regulação Neoplásica da Expressão Gênica , Perfilação da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos
4.
Sensors (Basel) ; 24(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38676001

RESUMO

Fatigued driving threatens the safety of people's lives and property. Scent countermeasures offer minimal disruption and high efficacy, making them a promising approach. The aim of this study was to explore the application of scent countermeasures in alleviating fatigued driving. This study explored changes in EEG frequency bands (alpha, beta, theta, and gamma) and the activity of EEG metrics (R(α/ß), Rθ/(α+ß) and R(α+θ)/(α+ß)) in the temporal lobe during driving tasks, selected fatigued driving identifiers, and aided validation by investigating subjective fatigue with the Karolinska Sleepiness Scale (KSS). The EEG indicators all increased, with a significant increase in R(α/ß). R(α/ß) was combined with the KSS to explore the effects of three scents, peppermint, grapefruit, and lavender, on driving fatigue. The subjective questionnaire results indicated that all three scents significantly improved driving fatigue, with significantly lower levels of driving fatigue compared to the control group. The analysis of EEG signals revealed a significant decrease in R(α/ß) after the implementation of scent countermeasures. Moreover, R(α/ß) was found to be lower in all three odor intervention groups compared to the control group. All three scents were found to significantly alleviate driving fatigue. The grapefruit scent had a better timely effect in relieving driving fatigue and the lavender scent had a longer effectiveness. This study provides further exploration for the application of odor interventions to alleviate driving fatigue. This study provides a practical reference for drivers to use odors to avoid fatigue in order to improve road safety.


Assuntos
Condução de Veículo , Eletroencefalografia , Fadiga , Odorantes , Humanos , Fadiga/prevenção & controle , Fadiga/fisiopatologia , Masculino , Odorantes/análise , Adulto , Feminino , Adulto Jovem
5.
Bioorg Chem ; 139: 106752, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37499529

RESUMO

A series of novel ziyuglycoside II derivatives were synthesized based on the classical 1,2,3-triazole moiety. Among the tested derivatives (Z-1 - Z-15), the compound Z-15 demonstrated the most potent antiproliferative effect on K562, MCF-7 and MV411 cell lines. Moreover, Z-15 did not show obvious cytotoxicity on MCF-10A cell, a human normal mammary epithelial cell. The cell colony formation assay showed that, compared to ziyuglycoside II and 5-fluorouracil, Z-15 could inhibit cell proliferation more robustly. Wound healing assays indicated that Z-15 could significantly inhibit MCF-7 cell migration. Further mechanistic research revealed that Z-15 induced mitochondrial-mediated apoptosis and autophagy in MCF-7 cell line in a dose-dependent manner.

6.
Phytopathology ; 113(2): 194-205, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36173282

RESUMO

Because effective control measures are lacking, tea leaf spot caused by Didymella segeticola results in huge tea (Camellia sinensis) production losses on tea plantations in Guizhou Province, southwestern China. Screening for natural antimicrobial agents with higher control effects against this pathogen and studying their modes of action may contribute to disease management. Here, Penicillium griseofulvum-derived antimicrobial griseofulvin (GSF) can inhibit the hyphal growth of D. segeticola strain GZSQ-4, with a half-maximal effective concentration of 0.37 µg/ml in vitro and a higher curative efficacy at a lower dose of 25 µg/ml for detached tea twigs. GSF induces deformed and slightly curly hyphae with enlarged ends, with protoplasts agglutinated in the hyphae, and higher numbers of hyphal protuberances. GSF alters hyphal morphology and the subcellular structure's order. The integrated transcriptome and proteome data revealed that the transport of materials in cells, cellular movement, and mitosis were modulated by GSF. Molecular docking indicated that beta-tubulin was the most potent target of GSF, with a binding free energy of -13.59 kcal/mol, and microscale thermophoresis indicated that the dissociation constant (Kd) value of GSF binding to beta-tubulin 1, compared with beta-tubulin 2, was significantly lower. Thus, GSF potentially targets beta-tubulin 1 to disturb the chromosomal separation and fungal mitosis, thereby inhibiting hyphal growth.


Assuntos
Anti-Infecciosos , Camellia sinensis , Griseofulvina/química , Tubulina (Proteína)/genética , Proteoma , Simulação de Acoplamento Molecular , Transcriptoma , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Chá , Camellia sinensis/microbiologia
7.
Plant Dis ; 107(9): 2830-2834, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37707825

RESUMO

Tea leaf spot caused by Didymella bellidis can seriously reduce the productivity and quality of tea (Camellia sinensis var. sinensis) leaves in Guizhou Province, southwest China. Analysis of the relationship between messenger RNAs (mRNAs) and long non-coding RNAs (lncRNAs) of tea could provide insights into the plant-pathogen interaction. In this study, high-throughput sequencing of mRNAs and lncRNAs from tea leaves during infection by D. bellidis was conducted using the Illumina Novaseq 6000 platform. Infection by D. bellidis hyphae resulted in up- or downregulation of 553 and 191 of the differentially expressed mRNAs (DEmRNAs), respectively. As the S gene number (total number of genes with significantly differential expression annotated in the specified Gene Ontology [GO] database), three were enriched with respect to the defense response to the fungus at the biological process level. Expression of the DEmRNAs peroxidase 21 (TEA000222.1) and mcht-2 (TEA013240.1) originating from tea leaves were upregulated during challenge by D. bellidis hyphae, whereas expression of the LRR receptor-like serine/threonine-protein kinase ERECTA (TEA016781.1) gene was downregulated. The infection of D. bellidis hyphae resulted in up- or downregulation of 227 and 958 of the differentially expressed lncRNAs (DElncRNAs). The DEmRNAs associated with uncharacterized LOC101499401 (TEA015626.1), uncharacterized protein (TEA014125.1), structural maintenance of chromosomes protein 1 (TEA001660.1), and uncharacterized protein (TEA017727.1) occurred as a result of cis regulation by DElncRNAs MSTRG.20036, MSTRG.3843, MSTRG.26132, and MSTRG.56701, respectively. The expression profiling and lncRNA/mRNA association prediction in the tea leaves infected by D. bellidis will provide a valuable resource for further research into disease resistance.


Assuntos
RNA Longo não Codificante , RNA Longo não Codificante/genética , Perfilação da Expressão Gênica/métodos , RNA Mensageiro/genética , Chá
8.
Plant Dis ; 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37018209

RESUMO

Puding County is the major Allium tuberosum growing area in Guizhou Province of China. In 2019, white leaf spots were observed on Allium tuberosum in Puding County (26.31°N, 105.64°E). The white spots, ranging from elliptic to irregular in shape, first appeared on leaf tips. With disease aggravation, spots gradually coalesced, forming necrotic patches with yellow margins causing leaf necrosis; sometimes there was gray mold on dead leaves. The incidence of the diseased leaf rate was estimated to be 27-48%. To identify the pathogenic agent, 150 leaf tissues (5 mm × 5 mm) were obtained from disease-healthy junctions of 50 diseased leaves. Leaf tissues were disinfected in 75% ethanol for 30 s, soaked in 0.5% sodium hypochlorite for 5 min, and flushed three times with sterile water, before being placed on potato dextrose agar (PDA) in the dark at 25 °C. When colonies appeared, the mycelial tips were picked and placed on new PDA. Purified fungus was obtained after repeating this last step several times. The colonies were grayish-green with white round margins. Conidiophores (2.7-4.5 µm × 27-81 µm) were brown, straight, or flexuous with branches and septa. Conidia (8-34 µm × 5-16 µm) were brown, with 0-5 transverse septa and 0-4 longitudinal septa. The 18S nuclear ribosomal DNA (nrDNA; SSU), 28S nrDNA (LSU), RNA polymerase II second largest subunit (RPB2), internal transcribed spacer (ITS), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and translation elongation factor 1-alpha (TEF-α) (Woudenberg et al. 2013) were amplified and sequenced. The sequences were deposited in GenBank (ITS: OP703616, LSU: OP860684, SSU: OP860685, GAPDH: OP902372, RPB2: OP902373, TEF1-α: OP902374). According to BLAST analysis, the ITS, LSU, GAPDH, RPB2, SSU, and TEF1-α of the straishowed 100% (689 of 731 base pairs; bp), 100% (916 of 938 bp), 100% (579 of 600 bp), 100% (946 of 985 bp), 100% (1093 of 1134 bp), and 100% (240 of 240 bp) sequence identity to those of Alternaria alternata (ITS: LC440581.1, LSU: KX609781.1, GAPDH: MT109295.1, RPB2: MK605900.1, SSU: ON055699.1 and TEF1-α: OM220081.1). A phylogenetic tree was constructed using PAUP4 and the maximum parsimony method with 1000 replicas of bootstrapping for all datasets. According to morphological characteristics and phylogenetic analysis, FJ-1 was identified as Alternaria alternata (Simmons 2007, Woudenberg et al. 2015). The strain was preserved in the Agricultural Culture Collection of China (preservation number: ACC39969). To determine the pathogenicity of Alternaria alternata against Allium tuberosum, wounded healthy leaves were inoculated with a conidial suspension (106 conidial/mL) and round mycelial plugs (4mm). Sterile agar PDA plugs with no mycelium or sterile water were inoculated as negative controls. Three days later, white spots appeared on the wounded leaves inoculated with mycelial plugs or conidial suspension. However, the symptoms caused by conidial suspensions were weaker than those caused by mycelial plugs. No symptoms were observed in the control group. The experimental symptoms were consistent with the phenomena observed in the field. The same fungus was reisolated from necrotic lesions and identified as Alternaria alternata using the method described above. To our knowledge, this is the first report of Alternaria alternata causing white leaf spots on Allium tuberosum in China, a disease seriously affected the yield and quality of Allium tuberosum and caused economic losses to farmers. Reference: Simmons EG (2007) Alternaria: an identification manual. CBS Fungal Biodiversity Centre, Utrecht, the Netherlands. Woudenberg JHC, Groenewald JZ, Binder M, Crous PW ( 2013) Alternaria redefined. Stud Mycol, 75: 171-212. https://doi.org/10.3114/sim0015. Woudenberg JHC, Seidl MF, Groenewald JZ, Vries M de, Stielow JB, Thomma BPHJ, Crous PW (2015) Alternaria section Alternaria: Species, formae speciales or pathotypes? Stud Mycol, 82:1-21. https://doi.org/10.1016/j.simyco.2015.07.001.

9.
Langmuir ; 38(17): 5052-5062, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-34264681

RESUMO

Microfluidics is an efficient technique for continuous synthesis of monodispersed microbubbles. However, microbubbles produced using microfluidic devices possess lower stability due to quick dissolution of core gas when exposed to an aqueous environment. This work aims at generating highly stable monodispersed albumin microbubbles using microfluidic T-junction devices. Microbubble generation was facilitated by an aqueous phase consisting of bovine serum albumin (BSA) as a model protein and nitrogen (N2) gas. Microbubbles were chemically cross-linked using dilute glutaraldehyde (0.75% v/v) solution and thermally cross-linked by collecting microbubbles in hot water maintained at 368 (±2) K. These microbubbles were then subjected to in vitro dissolution in an air-saturated water. Microbubbles cross-linked with a combined treatment of thermal and chemical cross-linking (TC & CC) had longer dissolution time compared to microbubbles chemically cross-linked (CC) alone, thermally cross-linked (TC) alone, and non-cross-linked microbubbles. Circular dichroism (CD) spectroscopy analysis revealed that percent reduction in alpha-helices of BSA was higher for the combined treatment of TC & CC when compared to other treatments. In contrast to non-cross-linked microbubbles where microbubble shell dissolved completely, a significant shell detachment was observed during the final phase of the dissolution for cross-linked microbubbles captured using high speed camera, depending upon the extent of cross-linking of the microbubble shell. SEM micrographs of the microbubble shell revealed the shell thickness of microbubbles treated with TC & CC to be highest compared to only thermally or only chemically cross-linked microbubbles. Comparison of microbubble dissolution data to a mass transfer model showed that shell resistance to gas permeation was highest for microbubbles subjected to a combined treatment of TC & CC.


Assuntos
Microbolhas , Microfluídica , Meios de Contraste/química , Dispositivos Lab-On-A-Chip , Soroalbumina Bovina/química , Água
10.
Langmuir ; 38(33): 10288-10304, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35943351

RESUMO

Microbubbles are tiny gas-filled bubbles that have a variety of applications in ultrasound imaging and therapeutic drug delivery. Microbubbles can be synthesized using a number of techniques including sonication, amalgamation, and saline shaking. These approaches can produce highly concentrated microbubble suspensions but offer minimal control over the size and polydispersity of the microbubbles. One of the simplest and effective methods for producing monodisperse microbubbles is capillary-embedded T-junction microfluidic devices, which offer great control over the microbubble size. However, lower production rates (∼200 bubbles/s) and large microbubble sizes (∼300 µm) limit the applicability of such devices for biomedical applications. To overcome the limitations of these technologies, we demonstrate in this work an alternative approach to combine a capillary-embedded T-junction device with ultrasound to enhance the generation of narrow-sized microbubbles in aqueous suspensions. Two T-junction microfluidic devices were connected in parallel and combined with an ultrasonic horn to produce lipid-coated SF6 core microbubbles in the size range of 1-8 µm. The rate of microbubble production was found to increase from 180 microbubbles/s in the absence of ultrasound to (6.5 ± 1.2) × 106 bubble/s in the presence of ultrasound (100% ultrasound amplitude). When stored in a closed environment, the microbubbles were observed to be stable for up to 30 days, with the concentration of the microbubble suspension decreasing from ∼2.81 × 109/mL to ∼2.3 × 106/mL and the size changing from 1.73 ± 0.2 to 1.45 ± 0.3 µm at the end of 30 days. The acoustic response of these microbubbles was examined using broadband attenuation spectroscopy, and flow phantom imaging was performed to determine the ability of these microbubble suspensions to enhance the contrast relative to the surrounding tissue. Overall, this approach of coupling ultrasound with microfluidic parallelization enabled the continuous production of stable microbubbles at high production rates and low polydispersity using simple T-junction devices.


Assuntos
Dispositivos Lab-On-A-Chip , Microbolhas , Acústica , Meios de Contraste/química , Suspensões , Ultrassonografia/métodos
11.
Langmuir ; 38(36): 10917-10933, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36018789

RESUMO

Long-term stability of microbubbles is crucial to their effectiveness. Using a new microfluidic device connecting three T-junction channels of 100 µm in series, stable monodisperse SiQD-loaded bovine serum albumin (BSA) protein microbubbles down to 22.8 ± 1.4 µm in diameter were generated. Fluorescence microscopy confirmed the integration of SiQD on the microbubble surface, which retained the same morphology as those without SiQD. The microbubble diameter and stability in air were manipulated through appropriate selection of T-junction numbers, capillary diameter, liquid flow rate, and BSA and SiQD concentrations. A predictive computational model was developed from the experimental data, and the number of T-junctions was incorporated into this model as one of the variables. It was illustrated that the diameter of the monodisperse microbubbles generated can be tailored by combining up to three T-junctions in series, while the operating parameters were kept constant. Computational modeling of microbubble diameter and stability agreed with experimental data. The lifetime of microbubbles increased with increasing T-junction number and higher concentrations of BSA and SiQD. The present research sheds light on a potential new route employing SiQD and triple T-junctions to form stable, monodisperse, multi-layered, and well-characterized protein and quantum dot-loaded protein microbubbles with enhanced stability for the first time.


Assuntos
Microbolhas , Pontos Quânticos , Dispositivos Lab-On-A-Chip , Microfluídica , Soroalbumina Bovina , Silício
12.
Phytopathology ; 112(9): 1894-1906, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35322715

RESUMO

Because of the lack of effective disease management measures, tea leaf spot-caused by the fungal phytopathogen Didymella segeticola (syn. Phoma segeticola)-is an important foliar disease. The important and widely used agricultural antimicrobial kasugamycin (Ksg), produced by the Gram-positive bacterium Streptomyces kasugaensis, effects high levels of control against crop diseases. The results of this study indicated that Ksg could inhibit the growth of D. segeticola hyphae in vitro with a half-maximal effective concentration (EC50) of 141.18 µg ml-1. Meanwhile, the curative effect in vivo on the pathogen in detached tea leaves also demonstrated that Ksg induced some morphological changes in organelles, septa, and cell walls as observed by optical microscopy and by scanning and transmission electron microscopy. This may indicate that Ksg disturbs biosynthesis of key metabolites, inhibiting hyphal growth. Integrated transcriptomic, proteomic, and bioinformatic analyses revealed that differentially expressed genes or differentially expressed proteins in D. segeticola hyphae in response to Ksg exposure were involved with metabolic processes and biosynthesis of secondary metabolites. Molecular docking studies indicated that Ksg may target nitrate reductase (NR), and microscale thermophoresis assay showed greater affinity with NR, potentially disturbing nitrogen assimilation and subsequent metabolism. The results indicated that Ksg inhibits the pathogen of tea leaf spot, D. segeticola, possibly by binding to NR, disturbing fungal metabolism, and inducing subsequent changes in hyphal growth and development.


Assuntos
Doenças das Plantas , Proteômica , Aminoglicosídeos , Antibacterianos/farmacologia , Ascomicetos , Simulação de Acoplamento Molecular , Nitrato Redutase , Doenças das Plantas/prevenção & controle , Chá
13.
Phytopathology ; 112(2): 460-463, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34110250

RESUMO

Tea leaf spot, caused by Lasiodiplodia theobromae, is an important disease that can seriously decrease the production and quality of tea (Camellia sinensis (L.) O. Kuntze) leaves. The analysis of circular RNA (circRNA) in tea leaves after infection by the pathogen could improve understanding about the mechanism of host-pathogen interactions. In this study, high-performance sequencing of circRNA from C. sinensis Fuding-dabaicha leaves that had been infected with L. theobromae was conducted using the Illumina HiSeq 4000 platform. In total, 192 and 153 differentially expressed circRNAs from tea leaves were significantly up- and downregulated, respectively, after infection with L. theobromae. A gene ontology analysis indicated that the differentially expressed circRNA-hosting genes for DNA binding were significantly enriched. The genes with significantly differential expressions that were annotated in the specified database (S genes) were σ factor E isoform 1, triacylglycerol lipase SDP1, DNA-directed RNA polymerase III subunit 2, WRKY transcription factor WRKY24, and regulator of nonsense transcripts 1 homolog. A Kyoto Encyclopedia of Genes and Genomes analysis indicated that the significantly enriched circRNA-hosting genes involved in the plant-pathogen interaction pathway were Calmodulin-domain protein kinase 5 isoform 1, probable WRKY transcription factor 33, U-box domain-containing protein 35, probable inactive receptor-like protein kinase At3g56050, WRKY transcription factor WRKY24, mitogen-activated protein kinase kinase kinase YODA, SGT1, and protein DGS1. Functional annotation of circRNAs in tea leaves infected by L. theobromae will provide a valuable resource for future research on host-pathogen interactions.


Assuntos
Ascomicetos , Camellia sinensis , Ascomicetos/genética , Perfilação da Expressão Gênica , Doenças das Plantas , RNA Circular , Chá
14.
Plant Dis ; 106(4): 1286-1290, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34433319

RESUMO

Tea leaf spot, caused by Didymella segeticola, is an important disease which negatively affects the productivity and the quality of tea leaves. During infection by the pathogen, competing endogenous RNAs (ceRNAs) from tea leaves could contribute to achieving pathogenicity. In this study, circular RNAs (circRNAs) and long noncoding RNAs (lncRNAs), constituting ceRNAs, which share binding sites on microRNAs (miRNAs), and messenger RNAs (mRNAs) from infected and uninfected leaves of tea (Camellia sinensis 'Fuding-dabaicha') were sequenced and analyzed, and the identity and expression levels of the target genes of miRNA-mRNA and miRNA-lncRNA/circRNA were predicted. Analysis indicated that 10 mRNAs were bound by 20 miRNAs, 66 lncRNAs were bound by 40 miRNAs, and 17 circRNAs were bound by 29 miRNAs, respectively. For the regulation modes of ceRNAs, five ceRNA pairs were identified by the correlation analysis of lncRNA-miRNA-mRNA. For instance, expression of the xyloglucan endotransglycosylase gene in infected leaves was downregulated at the level of mRNA through miRNA PC-5p-3511474_3 binding with lncRNA TEA024202.1:MSTRG.37074.1. Gene annotation indicated that expression of this gene was significantly enriched in cell wall biogenesis and in the pathway of plant hormone signal transduction. The functional analysis of ceRNAs isolated from infected tea leaves will provide a valuable resource for future research on D. segeticola pathogenicity.


Assuntos
MicroRNAs , RNA Longo não Codificante , Ascomicetos , MicroRNAs/genética , RNA Circular/genética , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Chá
15.
Sensors (Basel) ; 22(19)2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36236641

RESUMO

The method of using millimeter-wave radar sensors to detect human vital signs, namely respiration and heart rate, has received widespread attention in non-contact monitoring. These sensors are compact, lightweight, and able to sense and detect various scenarios. However, it still faces serious problems of noisy interference in hardware, which leads to a low signal-to-noise ratio (SNR). We used a frequency-modulated continuous wave (FMCW) radar sensor operating at 77 GHz in an office environment to extract the respiration and heart rate of a person accustomed to sitting in a chair. Indeed, the proposed signal processing includes novel impulse denoising operations and the spectral estimation decision method, which are unique in terms of noise reduction and accuracy improvement. In addition, the proposed method provides high-quality, repeatable respiration and heart rates with relative errors of 1.33% and 1.96% on average compared with the reference values measured by a reliable smart bracelet.


Assuntos
Radar , Sinais Vitais , Algoritmos , Frequência Cardíaca/fisiologia , Humanos , Monitorização Fisiológica/métodos , Respiração , Processamento de Sinais Assistido por Computador
16.
Int J Mol Sci ; 23(24)2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36555409

RESUMO

A series of novel 1,3,4-oxadiazole-artemisinin hybrids have been designed and synthesized. An MTT assay revealed that most of tested hybrids showed more enhanced anti-proliferative activities than artemisinin, among which A8 had the superior potency with IC50 values ranging from 4.07 µM to 9.71 µM against five tested cancer cell lines. Cell colony formation assays showed that A8 could inhibit significantly more cell proliferation than artemisinin and 5-fluorouracil. Further mechanism studies reveal that A8 induces apoptosis and ferroptosis in MCF-7 cells in a dose-dependent manner, and CYPs inhibition assays reveal that A8 has a moderate inhibitory effect on CYP1A2 and CYP3A4 in the human body at 10 µM. The present work indicates that hybrid A8 may merit further investigation as a potential therapeutic agent.


Assuntos
Antineoplásicos , Artemisininas , Ferroptose , Humanos , Células MCF-7 , Estrutura Molecular , Antineoplásicos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Apoptose , Artemisininas/farmacologia , Proliferação de Células , Relação Estrutura-Atividade , Linhagem Celular Tumoral
17.
Langmuir ; 36(39): 11429-11441, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32903006

RESUMO

This work focuses on the synthesis of oil-layered microbubbles using two microfluidic T-junctions in series and evaluation of the effectiveness of these microbubbles loaded with doxorubicin and curcumin for cell invasion arrest from 3D spheroid models of triple negative breast cancer (TNBC), MDA-MB-231 cell line. Albumin microbubbles coated in the drug-laden oil layer were synthesized using a new method of connecting two microfluidic T-mixers in series. Double-layered microbubbles thus produced consist of an innermost core of nitrogen gas encapsulated in an aqueous layer of bovine serum albumin (BSA) which in turn, is coated with an outer layer of silicone oil. In order to identify the process conditions leading to the formation of double-layered microbubbles, a regime map was constructed based on capillary numbers for aqueous and oil phases. The microbubble formation regime transitions from double-layered to single layer microbubbles and then to formation of single oil droplets upon gradual change in flow rates of aqueous and oil phases. In vitro dissolution studies of double-layered microbubbles in an air-saturated environment indicated that a complete dissolution of such bubbles produces an oil droplet devoid of a gas bubble. Incorporation of doxorubicin and curcumin was found to produce a synergistic effect, which resulted in higher cell deaths in 2D monolayers of TNBC cells and inhibition of cell proliferation from 3D spheroid models of TNBC cells compared to the control.


Assuntos
Microbolhas , Microfluídica , Doxorrubicina/farmacologia , Gases , Soroalbumina Bovina
18.
Fish Shellfish Immunol ; 103: 88-94, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32348885

RESUMO

The sea vegetable Hizikia fusiforme is not only a good source of dietary fiber but also enhances immunity. In this study, we investigated the effects of H. fusiforme on innate immunity in invertebrates, using white spot syndrome virus (WSSV) challenge in the crayfish, Procambarus clarkii. Supplementation with H. fusiforme significantly reduced mortality caused by WSSV infection and also reduced copy numbers of the WSSV protein VP28. Quantitative reverse transcription-polymerase chain reaction showed that supplementation of feed with H. fusiforme increased the expression of immune-related genes, including NF-κB and crustin 1. Further analysis showed that supplementation with H. fusiforme also affected three immune parameters, total hemocyte count, and phenoloxidase and superoxide dismutase activity. H. fusiforme treatment significantly increased hemocyte apoptosis rates in both WSSV-infected and uninfected crayfish. H. fusiforme thus regulates the innate immunity of crayfish, and both delays and reduces mortality after WSSV challenge. Our study demonstrates the potential for the commercial use of H. fusiforme, either therapeutically or prophylactically, to regulate the innate immunity and protect crayfish against WSSV infection.


Assuntos
Astacoidea/imunologia , Imunidade Inata/efeitos dos fármacos , Sargassum/química , Proteínas do Envelope Viral/genética , Vírus da Síndrome da Mancha Branca 1/fisiologia , Ração Animal/análise , Animais , Apoptose/efeitos dos fármacos , Astacoidea/efeitos dos fármacos , Astacoidea/virologia , Variações do Número de Cópias de DNA/efeitos dos fármacos , Dieta , Suplementos Nutricionais/análise , Longevidade/efeitos dos fármacos , Distribuição Aleatória , Replicação Viral/efeitos dos fármacos
19.
Sensors (Basel) ; 20(3)2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-32046225

RESUMO

A non-invasive real-time detection technique for phthalates in Chinese liquor is proposed in this paper. This method is based on the measurement of Faradaic impedance in the presence of a redox probe, [Fe(CN)6]3-/4-, upon the absorption of phthalates to the graphene electrode surface. This absorption activity is according to the π-π stacking interactions between phthalates and the graphene working electrode which allows direct sampling and analyte preconcentration. The absorption of phthalates retards the interfacial electron-transfer kinetics and increases the charge-transfer resistance (Rct). Numerical values of Rct were extracted from a simulation of electrochemical impedance spectroscopy (EIS) spectra with the corresponding equivalent circuit. Cathodic polarization was employed prior to EIS measurements to effectively eliminate the metal ion interference. The results yielded a detection limit of 0.024 ng/L for diethyl phthalate (DEP) with a linear range from 2.22 ng to 1.11 µg. These results indicate a possibility of developing a household sensor for phthalate determination in Chinese liquor.

20.
Anal Chem ; 91(15): 10320-10327, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31267731

RESUMO

Interventional medical detection techniques require expensive devices and cause inconvenience and discomfort to the human body, which restricts their application to the frequency and duration of measurements. A noninvasive respiration test is urgently required for the next-generation medical technologies in early disease warning and postoperative monitoring. This article describes a noninvasive and wearable sensing device that shows high sensitivity toward acetone in respiratory gases with excellent stability, low energy consumption, and reliable flexibility. To obtain such a sensor, the organic semiconductor compound La(TBPP)(TBNc) (TBPP = tetrakis(4-tert-butylphenyl)porphyrin; TBNc = tetrakis(4-tert-butylphenyl)naphthalocyanine) was synthesized and further self-assembled into a highly ordered flexible film via a simple solution-vapor annealing method. The fabricated flexible film was deposited on an interdigitated electrode with poly(ethylene terephthalate) substrate and employed as an electrical identification component for a respiration sensor. Thanks to the attractive electron-transfer properties of highly ordered films and strong electron affinity of La(TBPP)(TBNc) molecules, the as-prepared sensor shows a low detection limit (200 ppb) and acceptable selectivity. The wrinkled/rippled structure of films endows the fabricated sensors with the ability of mechanical flexibility. More importantly, the experimental results suggest the potential application of acetone identification in real respiratory gases and provide a new concept for the development of noninvasive and wearable medical diagnostic devices.


Assuntos
Acetona/análise , Técnicas Biossensoriais/métodos , Testes Respiratórios/instrumentação , Elétrons , Gases/análise , Semicondutores , Dispositivos Eletrônicos Vestíveis/estatística & dados numéricos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA