Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Hepatol ; 73(4): 906-917, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32407813

RESUMO

BACKGROUND & AIMS: Neutrophils are one of the most abundant components in human hepatocellular carcinoma (HCC) and have been shown to play important roles in regulating disease progression. However, neutrophils are very short-lived cells in circulation, and mechanisms regulating their accumulation and functions in HCC are not yet fully understood. METHODS: Monocytes were purified from non-tumor or paired tumor tissues of patients with HCC, and their production of neutrophil-attracting chemokines was evaluated. Mechanisms regulating the expression of CXCL2/8 by tumor monocytes, and the role of tumor monocyte-derived chemokines and cytokines in modulating neutrophil accumulation and functions were studied with both ex vivo analyses and in vitro experiments. RESULTS: Monocyte-derived CXCL2 and CXCL8 were major factors in regulating the recruitment of neutrophils into tumor milieus. These chemokines, in addition to tumor-derived soluble factors, could inhibit apoptosis and sustain survival of neutrophils, thus leading to neutrophil accumulation in tumor tissues. Moreover, monocyte-derived TNF-α acted synergistically with tumor-derived soluble factors to induce the production of the pro-metastasis factor OSM by neutrophils. Further, the glycolytic switch in tumor-infiltrating monocytes mediated their production of CXCL2 and CXCL8 via the PFKFB3-NF-κB signaling pathway. Accordingly, levels of PFKFB3, CXCL2/CXCL8 production in monocytes and infiltration of OSM-producing neutrophils were positively correlated in human HCC tissues. CONCLUSIONS: Our results unveiled a previously unappreciated link between monocytes and neutrophils in human HCC, identifying possible targets that could be therapeutically exploited in the future. LAY SUMMARY: Neutrophils constitute a major but poorly understood component of human hepatocellular carcinoma (HCC). Herein, we unveil a novel mechanism by which metabolic switching in monocytes promotes the accumulation of neutrophils in the tumors of patients with HCC. Both monocyte-produced chemokines and signals from the tumor microenvironment promote the production of the pro-metastatic factor OSM by neutrophils. These data identify potential targets for immune-based anticancer therapies for HCC.


Assuntos
Carcinoma Hepatocelular/metabolismo , Glicólise/fisiologia , Neoplasias Hepáticas/metabolismo , Monócitos/metabolismo , Neutrófilos/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Humanos , Neoplasias Hepáticas/patologia , Masculino , Monócitos/patologia , Neutrófilos/patologia , Estudos Retrospectivos , Transdução de Sinais
2.
J Hepatol ; 71(2): 333-343, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31071366

RESUMO

BACKGROUND & AIMS: Programmed cell death 1 ligand 1 (PD-L1) expression on antigen-presenting cells is essential for T cell impairment, and PD-L1-expressing macrophages may mechanistically shape and therapeutically predict the clinical efficacy of PD-L1 or programmed cell death 1 blockade. We aimed to elucidate the mechanisms underlying PD-L1 upregulation in human tumor microenvironments, which remain poorly understood despite the clinical success of immune checkpoint inhibitors. METHODS: Monocytes/macrophages were purified from peripheral blood, non-tumor, or paired tumor tissues of patients with hepatocellular carcinoma (HCC), and their possible glycolytic switch was evaluated. The underlying regulatory mechanisms and clinical significance of metabolic switching were studied with both ex vivo analyses and in vitro experiments. RESULTS: We found that monocytes significantly enhanced the levels of glycolysis at the peritumoral region of human HCC. The activation of glycolysis induced PD-L1 expression on these cells and subsequently attenuated cytotoxic T lymphocyte responses in tumor tissues. Mechanistically, tumor-derived soluble factors, including hyaluronan fragments, induced the upregulation of a key glycolytic enzyme, PFKFB3, in tumor-associated monocytes. This enzyme not only modulated the cellular metabolic switch but also mediated the increased expression of PD-L1 by activating the nuclear factor kappa B signaling pathway in these cells. Consistently, the levels of PFKFB3+CD68+ cell infiltration in peritumoral tissues were negatively correlated with overall survival and could serve as an independent prognostic factor for survival in patients with HCC. CONCLUSIONS: Our results reveal a mechanism by which the cellular metabolic switch regulates the pro-tumor functions of monocytes in a specific human tumor microenvironment. PFKFB3 in both cancer cells and tumor-associated monocytes is a potential therapeutic target in human HCC. LAY SUMMARY: Programmed cell death 1 ligand 1 (PD-L1) expressed on antigen-presenting cells, rather than tumor cells, has been reported to play an essential role in checkpoint blockade therapy. A fundamental understanding of mechanisms that regulate the expression of PD-L1 on tumor-infiltrating monocytes/macrophages will undoubtedly lead to the possibility of developing novel PD-L1 blockade strategies with high specificity and efficiency. The current study unveils a novel mechanism by which metabolic switching links immune activation responses to immune tolerance in the tumor milieu, identifying potential targets for future immune-based anti-cancer therapies.


Assuntos
Antígeno B7-H1/metabolismo , Carcinoma Hepatocelular/imunologia , Glicólise , Privilégio Imunológico , Neoplasias Hepáticas/imunologia , Monócitos/metabolismo , Fosfofrutoquinase-2/metabolismo , Adulto , Idoso , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Linfócitos T CD8-Positivos/imunologia , Carcinoma Hepatocelular/sangue , Carcinoma Hepatocelular/patologia , Progressão da Doença , Feminino , Seguimentos , Células Hep G2 , Humanos , Neoplasias Hepáticas/sangue , Neoplasias Hepáticas/patologia , Macrófagos/metabolismo , Masculino , Pessoa de Meia-Idade , Monócitos/imunologia , Microambiente Tumoral/imunologia , Adulto Jovem
3.
J Pathol ; 239(2): 231-41, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27174787

RESUMO

Macrophages are a major component of most solid tumours and can exert both anti- and pro-tumourigenic functions. Although the immunosuppressive/pro-tumour roles of macrophages have been widely examined, significantly less is known about macrophage subpopulations that have potential anti-tumour properties in humans. In the present study, a population of CD169(+) macrophages with relatively high expression levels of HLA-DR and CD86 was identified in human hepatocellular carcinoma tissues. The frequency of CD169-expressing macrophages within cancer nests was significantly lower than that found in paired non-tumour areas. In vitro experiments revealed that in the presence of anti-CD3 stimulation, CD169(+) macrophages could significantly enhance the proliferation, cytotoxicity, and cytokine production capacity of CD8(+) T cells in a CD169 molecule-dependent manner. Autocrine TGF-ß produced by tumour-stimulated macrophages was involved in the down-regulation of CD169 expression on these cells. Moreover, the accumulation of CD169(+) macrophages in tumour tissues was negatively associated with disease progression and predicted favourable survival in hepatocellular carcinoma patients, which was in contrast to the trend observed for total CD68(+) macrophages. Therefore, CD169 might act as a co-stimulatory molecule for cytotoxic T-cell activation, and could define a population of tumour-infiltrating macrophages with potential anti-tumour properties in human hepatocellular carcinoma tissues. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Carcinoma Hepatocelular/imunologia , Neoplasias Hepáticas/imunologia , Macrófagos/imunologia , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Antígeno B7-2/imunologia , Antígeno B7-2/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Carcinoma Hepatocelular/patologia , Regulação para Baixo , Feminino , Antígenos HLA-DR/imunologia , Antígenos HLA-DR/metabolismo , Humanos , Neoplasias Hepáticas/patologia , Ativação Linfocitária , Macrófagos/patologia , Masculino , Pessoa de Meia-Idade , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/patologia , Fator de Crescimento Transformador beta/imunologia , Fator de Crescimento Transformador beta/metabolismo , Microambiente Tumoral , Adulto Jovem
4.
J Immunother Cancer ; 11(2)2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36849198

RESUMO

BACKGROUND: Effects of immune checkpoint blockade (ICB) treatment in hepatocellular carcinoma (HCC) are limited. The current study explored the possibility of exploiting tumor metabolic switches to enhance HCC sensitivity to immune therapies. METHODS: Levels of one-carbon (1C) metabolism and the expression of phosphoserine phosphatase (PSPH), an upstream enzyme of 1C pathway, were evaluated in paired non-tumor and tumor tissues from HCC. Underlying mechanisms mediating the role of PSPH in regulating the infiltration of monocytes/macrophages and CD8+ T lymphocytes were studied through both in vitro and in vivo experiments. RESULTS: PSPH was significantly upregulated in tumor tissues of HCC and its levels were positively correlated with disease progression. PSPH knockdown inhibited tumor growth in immunocompetent mice, but not in those with macrophage or T lymphocyte deficiencies, indicating the pro-tumor effects of PSPH were dependent on both immune components. Mechanistically, PSPH facilitated monocytes/macrophages infiltration by inducing the production of C-C motif chemokine 2 (CCL2), while at the same time reduced CD8+ T lymphocytes recruitment through inhibiting the production of C-X-C Motif Chemokine 10 (CXCL10) in tumor necrosis factor alpha (TNF-α)-conditioned cancer cells. Glutathione and S-adenosyl-methionine were partially involved in regulating the production of CCL2 and CXCL10, respectively. shPSPH (short hairpin RNA) transfection of cancer cells enhanced tumor sensitivity to anti-programmed cell death protein 1 (PD-1) therapy in vivo, and interestingly, metformin could inhibit PSPH expression in cancer cells and mimic the effects of shPSPH in sensitizing tumors to anti-PD-1 treatment. CONCLUSIONS: By tilting the immune balance towards a tumor-friendly composition, PSPH might be useful both as a marker in stratifying patients for ICB therapy, and as an attractive therapeutic target in the treatment of human HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/tratamento farmacológico , Regulação para Baixo , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico
5.
J Clin Invest ; 132(7)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35362480

RESUMO

Macrophages constitute a major immune component in tumor tissues, but how these cells adapt to and survive in the nutrient-depleted and lactic acid-induced acidic tumor microenvironments is not yet fully understood. Here, we found that levels of carbonic anhydrase XII (CA12) expression were significantly and selectively upregulated on macrophages in human hepatocellular carcinoma (HCC). Transient glycolytic activation of peritumoral monocytes induced sustained expression of CA12 on tumor-infiltrating macrophages via autocrine cytokines and HIF1α pathways. On the one hand, CA12 mediated the survival of macrophages in relatively acidic tumor microenvironments, while on the other hand, it induced macrophage production of large amounts of C-C motif chemokine ligand 8 (CCL8), which enhanced cancer cell epithelial-mesenchymal transition (EMT) and facilitated tumor metastasis. Consistently, the accumulation of CA12+ macrophages in tumor tissues was associated with increased tumor metastatic potential and reduced survival of patients with HCC. Selective targeting of tumor-infiltrating macrophages with a CA12 inhibitor reduced tumor growth in mice and was sufficient to synergistically enhance the therapeutic efficacy of immune-checkpoint blockade. We suggest that CA12 activity is a previously unappreciated mechanism regulating the accumulation and functions of macrophages in tumor microenvironments and therefore represents a selective vulnerability that could be exploited in future designs for antitumor immunotherapeutic strategies.


Assuntos
Anidrases Carbônicas , Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Anidrases Carbônicas/genética , Anidrases Carbônicas/metabolismo , Carcinoma Hepatocelular/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Macrófagos/metabolismo , Camundongos , Microambiente Tumoral
6.
Oncoimmunology ; 11(1): 2052418, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35309732

RESUMO

Neutrophils constitute a major component in human hepatocellular carcinoma (HCC) and can facilitate disease progression via poorly understood mechanisms. Here, we show that neutrophil extracellular traps (NETs) formation was increased in human HCC tumor tissues than in paired non-tumor liver tissues. Mechanism study revealed that tumor-induced metabolic switch toward glycolysis and pentose phosphate pathway in tumor infiltrating neutrophils promoted NETs formation in a reactive oxygen species dependent-manner. NETs subsequently induced the migration of cancer cells and down-regulation of tight junction molecules on adjacent endothelial cells, thus facilitating tumor intravasation and metastasis. Accordingly, NETs depletion could inhibit tumor metastasis in mice in vivo, and the infiltration levels of NETs-releasing neutrophils were negatively associated with patient survival and positively correlated with tumor metastasis potential of HCC patients. Our results unveiled a pro-metastatic role of NETs in the milieu of human HCC, and pointed to the importance of metabolic reprogramming in shaping their characteristics, thus providing an applicable efficient target for anti-cancer therapies.


Assuntos
Carcinoma Hepatocelular , Armadilhas Extracelulares , Neoplasias Hepáticas , Animais , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Armadilhas Extracelulares/metabolismo , Humanos , Neoplasias Hepáticas/secundário , Camundongos , Neutrófilos
7.
Oncoimmunology ; 5(7): e1177690, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27622027

RESUMO

PURPOSE: CD169 was first identified on macrophages (Mϕ) and linked to antigen presentation. Here, we showed CD169 expression on some CD8(+) T lymphocytes in regional lymph nodes (LNs) and investigated the function and clinical relevance of CD169(+)CD8(+) T cells in tumor-draining LNs of colorectal cancer (CRC) patients. EXPERIMENTAL DESIGN: Fresh tumor-draining LN tissues from 39 randomly enrolled patients were assessed by flow cytometry for activation and differentiation of CD169(+)CD8(+) T cells and T cell-mediated killing of tumor cells. In total, 114 tumor-draining LN paraffin sections from CRC patients were analyzed by multiple-color immunofluorescence for CD169(+)CD8(+) T cell distribution and clinical values. The prognostic significance of CD169(+)CD8(+) T cells was evaluated by Kaplan-Meier analysis. RESULTS: A fraction of CD8(+) T cells in regional LNs, but not peripheral blood, tonsils, or tumors, expressed surface CD169. In situ detection of draining LNs revealed preferential localization of CD169(+)CD8(+) T cells to subcapsular sinus and interfollicular regions, closely associated with CD169(+) Mϕ. CD169(+)CD8(+) T cell ratios were significantly lower in peri-tumor LNs than distant-tumor LNs. CD169(+)CD8(+) T cells predominantly expressed activation markers (CD69, HLA-DR, PD-1) with slightly lower CD45RA and CD62L levels. They produced high granzyme B, perforin, TNF-α, and IFNγ levels, and promoted tumor-killing efficiency ex vitro. Moreover, CD169(+)CD8(+) T cells infiltrating tumor-draining LNs decreased with disease progression and were strongly associated with CRC patient survival. CONCLUSIONS: We identified novel activated/cytolytic CD169(+)CD8(+) T cells selectively present in regional LNs, potentially serving as a powerful prognostic factor and indicator for selecting patients for immunotherapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA