Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Sci Food Agric ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39118479

RESUMO

BACKGROUND: Sanqi, the root of Panax notoginseng, has long been recognized for its therapeutic effects on cardiovascular diseases. Saponins, including ginsenosides and notoginsenosides, are the main bioactive components of P. notoginseng. The biosynthesis of saponins is closely related to the defense responses orchestrated by endogenous hormones. RESULTS: To provide new insights into the underlying role of phytohormone jasmonic acid (JA) in the synthesis and regulation of saponins, we performed an ultra-performance liquid chromatography analysis of different tissues of P. notoginseng aged 2-4 years. Moreover, by combined evaluation of saponin content and transcriptome profiling of each tissue, the spatial and temporal distribution of saponins was analyzed. N notoginsenoside R1, ginsenoside Rb1 and ginsenoside Rd accumulated in the underground tissues, including the root, tuqi, fibril and rhizome. In agreement with this data, the corresponding genes of the endogenous hormone JAs, especially coronatine insensitive 1 (COI1) and myelocytomatosis proteins 2 (MYC2), were predominantly expressed in the underground tissues. The tissue- and age-specific distribution of saponins was consistent with the expression of genes involved in JA biosynthetic, metabolic and signaling pathways. CONCLUSION: The present study has revealed the temporal and spatial effects of endogenous phtohormones in the synthesis and regulation of notoginsenosides, which will provide a significant impact on improving the ecological planting technology, cultivating new high-quality varieties and protecting the rare resources of medicinal P. notoginseng. © 2024 Society of Chemical Industry.

2.
Front Bioeng Biotechnol ; 10: 805429, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35198543

RESUMO

Friedelin, the most rearranged pentacyclic triterpene, also exhibits remarkable pharmacological and anti-insect activities. In particular, celastrol with friedelin as the skeleton, which is derived from the medicinal plant Tripterygium wilfordii, is a promising drug due to its anticancer and antiobesity activities. Although a previous study achieved friedelin production using engineered Saccharomyces cerevisiae, strains capable of producing high-level friedelin have not been stably engineered. In this study, a combined strategy was employed with integration of endogenous pathway genes into the genome and knockout of inhibiting genes by CRISPR/Cas9 technology, which successfully engineered multiple strains. After introducing an efficient TwOSC1T502E, all strains with genetic integration (tHMG1, ERG1, ERG20, ERG9, POS5, or UPC2.1) showed a 3.0∼6.8-fold increase in friedelin production compared with strain BY4741. Through further double knockout of inhibiting genes, only strains GD1 and GD3 produced higher yields. Moreover, strains GQ1 and GQ3 with quadruple mutants (bts1; rox1; ypl062w; yjl064w) displayed similar increases. Finally, the dominant strain GQ1 with TwOSC1T502E was cultured in an optimized medium in shake flasks, and the final yield of friedelin reached 63.91 ± 2.45 mg/L, which was approximately 65-fold higher than that of the wild-type strain BY4741 and 229% higher than that in ordinary SD-His-Ura medium. It was the highest titer for friedelin production to date. Our work provides a good example for triterpenoid production in microbial cell factories and lays a solid foundation for the mining, pathway analysis, and efficient production of valuable triterpenoids with friedelin as the skeleton.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA