Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Angew Chem Int Ed Engl ; 62(34): e202307352, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37319123

RESUMO

The C-C bond formation between C1 molecules plays an important role in chemistry as manifested by the Fischer-Tropsch (FT) process. Serving as models for the FT process, we report here the reactions between a neutral AlI complex (Me NacNac)Al (1, Me NacNac=HC[(CMe)(NDipp)]2 , Dipp=2,6-diisopropylphenyl) and various isocyanides. The step-by-step coupling mechanism was studied in detail by low-temperature NMR monitoring, isotopic labeling, as well as quantum chemical calculations. Three different products were isolated in reaction of 1 with the sterically encumbered 2,6-bis(benzhydryl)-4-Me-phenyl isocyanide (BhpNC). These products substantiate carbene intermediates. The reaction between 1 and adamantyl isocyanide (AdNC) generated a trimerization product, and a corresponding carbene intermediate could be trapped in the form of a molybdenum(0) complex. Tri-, tetra-, and even pentamerization products were isolated with the sterically less congested phenyl and p-methoxyphenyl isocyanides (PhNC and PMPNC) with concurrent construction of quinoline or indole heterocycles. Overall, this study provides evidence for carbene intermediates in FT-type chemistry of aluminium(I) and isocyanides.

2.
Lasers Med Sci ; 36(4): 783-790, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32651700

RESUMO

The optical properties of hemoglobin could indicate the degree of hemolysis. We aimed to utilize this to develop a real-time blood damage monitoring device for cardiopulmonary bypass (CPB) systems. The real-time blood damage monitoring device comprised a near-infrared spectroscopy optical module with a fiber spectrometer and monitoring platform and computer software developed using LabVIEW 2017. The fiber spectrometer operated at wavelengths of 545, 660, and 940 nm and contained a detector fiber bundle (source-detector distance = 1.0-2.5 cm). CPB operation was simulated using an artificial heart-lung machine with a flow rate of 3, 4, or 5 L/min. Four hundred milliliter of anticoagulated porcine blood was continuously rotated for 4 h. The transmittance, reflectivity, and absorbance of the blood were measured using the optical device at a frequency of 25 Hz and then digitally averaged into 1-s interval. Samples of damaged blood were collected at regular intervals for in vitro hemolysis tests to calculate the normalized index of hemolysis (NIH). All experiments were repeated three times. We prepared 28 blood bags containing 400 ml of anticoagulant. Paired t test was used to examine the test-retest reliability of the differences between the three methods and control samples. Statistical tests revealed significant differences in the mean values between the test and control groups over time (P < 0.01). Relationship was established between the real-time monitoring results and the NIH values. An effective blood damage detection method that combined in vitro hemolysis tests and near-infrared spectroscopy was achieved. The results demonstrate the clinical potential of a real-time, low-cost, and reliable blood damage monitoring device to improve the safety of CPB operation.


Assuntos
Ponte Cardiopulmonar/instrumentação , Espectroscopia de Luz Próxima ao Infravermelho , Máquina Coração-Pulmão , Hemoglobinas/metabolismo , Hemólise , Humanos , Reprodutibilidade dos Testes
3.
Gait Posture ; 112: 147-153, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38795475

RESUMO

BACKGROUND: As a geriatric syndrome, sarcopenia may exacerbate static postural control and increase fall risk among older adults. The Romberg test, a simple method to assess static postural control, has the potential to predict fall, but has rarely been used to assess static postural control and fall risk in sarcopenic older adults. RESEARCH QUESTION: How does sarcopenia increase fall risk by affecting static postural control? METHODS: Forty-four older adults performed the Romberg test and were included for analyses. Romberg parameters, including Center of Pressure (CoP), Center of Mass (CoM) and Displacement Angle (DA), were collected under eyes-open/eyes-closed conditions. Sarcopenia was defined according to the Asian Working Group for Sarcopenia 2019 criteria. Fall risk was assessed using the Morse Elderly Fall Risk Assessment Scale (MFS), and fear of falling was evaluated using the Falls Efficacy Scale-International (FES-I). Multivariate linear regression models were conducted to examine the associations of sarcopenia with Romberg test parameters, fear of falling, and fall risk. RESULTS: Sarcopenic older adults had higher scores of both fear of falling and fall risk (P<0.001 and =0.006, respectively), and worse static postural control parameters (P values ranging from <0.001-0.043) than healthy controls, demonstrated by the multivariate linear regression models. Most of the Romberg test parameters were significantly associated with fear of falling score, especially under eyes-closed condition, and fear of falling was further associated with higher fall risk score (ß=0.90, P=0.001). Meanwhile, the presence of sarcopenia also significantly increased fall risk score (ß=10.0, P<0.001). SIGNIFICANCE: Sarcopenia may increase fall risk in older adults via worsen static postural control ability and increase fear of falling. Paying attention and making efforts to prevent sarcopenia may help to alleviate postural control dysfunction, decrease fear of falling, so as to reduce fall risk and prevent severe injuries caused by fall accidents.


Assuntos
Acidentes por Quedas , Medo , Equilíbrio Postural , Sarcopenia , Humanos , Equilíbrio Postural/fisiologia , Idoso , Feminino , Masculino , Sarcopenia/fisiopatologia , Medição de Risco , Avaliação Geriátrica , Idoso de 80 Anos ou mais , Fatores de Risco
4.
J Biomech ; 147: 111420, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36652892

RESUMO

Population-based knee joint space width (JSW) assessments are promising for the prevention and early diagnosis of osteoarthritis. This study aimed to establish the statistical shape and alignment model (SSAM) of knee joints for assessing anatomic variation in knee JSW in the healthy Chinese male population. CT scans of asymptomatic knee joints of healthy male participants (n = 107) were collected for manual segmentation to create mesh samples. The as-scanned positional error was reduced by a standard processing flow of deformable mesh registration. Principal component analysis (PCA) was performed to create a tibiofemoral SSAM that was trained on all mesh samples. The anatomic variability of the JSW in the healthy Chinese male population was then assessed using the SSAM with regression analysis and 3D analysis by color-coded mapping. Almost all PCA modes had a linear influence on the anatomic variation of the medial and lateral JSW. The JSW variability within the SSAM was mainly explained by mode 1 (45.1 % of variation), demonstrating that this mode had the greatest influence on JSW variation. 3D assessment of the JSW showed that the minimum medial JSW varied from 2.76 to 3.23 mm, and its site shifted a short distance on the medial tibial plateau. The root-mean-square fitting and generalization errors of the SSAM were below 1 mm. This study will benefit the design and optimization of prosthetic devices, and may be applicable to the prevention and early diagnosis of osteoarthritis.


Assuntos
Osteoartrite do Joelho , Masculino , Humanos , Osteoartrite do Joelho/diagnóstico por imagem , Articulação do Joelho/diagnóstico por imagem , Tíbia/diagnóstico por imagem , Tomografia Computadorizada por Raios X
5.
Bioengineering (Basel) ; 10(2)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36829704

RESUMO

The concepts of "optimal posture (OP)" and "harmful posture (HP)" are commonly used, and specific spinal postures can contribute to back pain. However, quantitative descriptions of optimal and harmful standing (StP) and sitting (SP) postures are currently lacking, particularly for different body mass indices (BMIs). Therefore, this study aimed to identify and quantify the OPs and HPs of StP and SP at different BMIs and investigate the attitudes and beliefs of rehabilitation practitioners toward OPs and HPs. Overall, 552 rehabilitation practitioners were recruited to participate in a questionnaire survey to select the optimal position from seven sitting and five standing postures for each BMI healthy volunteer. The segmental relationships of each posture were qualified using the Vicon software. For normal BMI, the physiotherapists chose two SPs (48.19% and 49.64%) and one StP (80.42%) as the OP. One sitting SP (83.7%) and two standing StPs (43.48% and 48.19%) were selected as optimal for obese BMI. All the most commonly selected OPs had an upright lordotic posture, while the postures with slouched spinal curves or forward head postures were almost all selected as HP. Additionally, 96.74% of participants considered education about optimal SP and StP to be "quite" or "very" important. The OP of the StP and SP postures was mostly based on the vertical alignment of gravity lines and sagittal balance. For obese people, the rehabilitation practitioners' observations may be erroneous, and further physical examination is necessary. Rehabilitation practitioners generally believe that postural education is essential in clinical practice.

6.
Front Bioeng Biotechnol ; 11: 1192647, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37304142

RESUMO

Introduction: Thoracolumbar kyphosis (TLK) is a common feature in patients with spinal deformities. However, due to limited studies, the impacts of TLK on gait have not been reported. The objective of the study was to quantify and evaluate the impacts of gait biomechanics of patients with TLK secondary to Scheuermann's disease. Methods: Twenty cases of Scheuermann's disease patients with TLK and twenty cases of asymptomatic participants were recruited into this study. And the gait motion analysis was conducted. Results: The stride length was shorter in the TLK group compared to control group (1.24 ± 0.11 m vs. 1.36 ± 0.21 m, p = 0.04). Compared to control group, the stride time and step time were more prolonged in the TLK group (1.18 ± 0.11s vs. 1.11 ± 0.08 s, p = 0.03; 0.59 ± 0.06 s vs. 0.56 ± 0.04 s, p = 0.04). The gait speed of the TLK group was significantly slower than it of control group (1.05 ± 0.12 m/s vs. 1.17 ± 0.14 m/s, p = 0.01); In the sagittal plane, the range of motion (ROM) of the hip in the TLK group was significantly smaller than that of the control group (37.71 ± 4.35° vs. 40.05 ± 3.71°, p = 0.00). In the transverse plane, the adduction/abduction ROMs of the knee and ankle, as well as the internal and external rotation of the knee, were smaller in TLK group than ROMs in the control group (4.66 ± 2.21° vs. 5.61 ± 1.82°, p = 0.00; 11.48 ± 3.97° vs. 13.16 ± 5.6°, p = 0.02; 9.00 ± 5.14° vs. 12.95 ± 5.78°, p = 0.00). Discussion: The main finding of this study was that measurements of gait patterns and joint movement of the TLK group were significantly lower than those of the control group. And these impacts have the potential to exacerbate degenerative progress of joints in the lower extremities. These abnormal features of gait can also serve as a guideline for physicians to focus on TLK in these patients.

7.
Int J Numer Method Biomed Eng ; 38(5): e3590, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35289106

RESUMO

The present study investigated the effects of anteromedial (AM) and central femoral footprint placement on stress and strain distribution around the femoral and tibial tunnel and graft following anterior cruciate ligament reconstruction (ACLR). A three-dimensional (3D) reconstructed knee model was validated and used for simulating ACLR by finite element analysis. A combined loading during normal human walking was applied to the knee models using different anatomic femoral tunnel placement at 20° knee flexion. The results of von Mises stress and principal strain at the entrances of the femoral and tibial tunnel and ACL graft was determined. The peak von Mises stress and the maximum principal strain in the AM footprint group were 8.78 MPa and 8850.89 µ-strain at the entrance of femoral tunnel, and 5.29 MPa and 5553.27 µ-strain at the entrance of tibial tunnel. The results in the AM footprint group were higher than that in the central footprint group. The peak von Mises stress around the ACL graft following AM footprint ACLR was 28.63 MPa, higher than that following the central footprint ACLR. The AM footprint ACLR generated more significant peak von Mises stress and maximum principal strain around the entrances of femoral and tibial tunnel and the graft than the central footprint. The present results are of clinical relevance as they can provide a better understanding of tunnel enlargement and graft failure.


Assuntos
Reconstrução do Ligamento Cruzado Anterior , Ligamento Cruzado Anterior , Ligamento Cruzado Anterior/cirurgia , Reconstrução do Ligamento Cruzado Anterior/métodos , Fêmur/cirurgia , Humanos , Articulação do Joelho , Tíbia/cirurgia
8.
Front Bioeng Biotechnol ; 10: 899799, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36394018

RESUMO

Background: The anterior cruciate ligament (ACL) is one of the most injurious parts of the knee in the biomechanical environment during landing actions. The purpose of this study was to compare the lower limb differences in movement patterns, muscle forces and ACL forces during drop landing (DL), drop vertical jump (DVJ) and forward vertical jump (FVJ). Methods: Eleven basketball and volleyball female college athletes (Division II and I) were recruited. Landing actions of DL, DVJ and FVJ, kinematics and dynamics data were collected synchronously using a motion capture system. OpenSim was used to calculate the ACL load, knee joint angle and moment, and muscle force. Results: At initial contact, different landing movements influenced knee flexion angle; DL action was significantly less than FVJ action (p = 0.046). Different landing actions affected quadriceps femoris forces; FVJ was significantly greater than DL and DVJ actions (p = 0.002 and p = 0.037, respectively). However, different landing movements had no significant effects on other variables (knee extension moment, knee valgus angle and moment, hamstring and gastrocnemius muscle forces, and ACL forces) (p > 0.050). Conclusion: There was no significant difference in the knee valgus, knee valgus moment, and the ACL forces between the three landing actions. However, knee flexion angle, knee extension moments sagittal factors, and quadriceps and gastrocnemius forces are critical factors for ACL injury. The DL action had a significantly smaller knee flexion angle, which may increase the risk of ACL injury, and not recommended to assess the risk of ACL injuries. The FVJ action had a larger knee flexion angle and higher quadriceps femoris forces that were more in line with daily training and competition needs. Therefore, it is recommended to use FVJ action in future studies on risk assessment of ACL injuries and injury prevention in female college athletes.

9.
Front Surg ; 9: 966617, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36117825

RESUMO

Background: Precise preoperative planning improves postoperative outcomes in total hip arthroplasty (THA), especially in developmental dysplasia of the hip (DDH) cases. Previous studies used the T-line and midcortical-line as preoperative landmarks to predict postoperative stem anteversion (PSA). However, the most reliable landmark in predicting PSA in DDH patients remains unclear. To find the most reliable measurement to predict the PSA in DDH patients, this study compared the midcortical-line and T-line at different femoral neck levels. Methods: Pre- and postoperative Computed Tomography (CT) scans of 28 hips in 21 DDH patients who received THA were obtained for three-dimensional femoral models. The preoperative CT scan was used to measure the anteversion of the midcortical-line on the axial cross-sectional plane images (AM-CT), the anteversion of the midcortical-line from 3D models (AM-3D), and the T-line from 3D models (AT-3D) at simulated osteotomy planes at 5 and 10 mm heights proximal to the base of the lesser trochanter. The correlation between the preoperative femoral anteversion (AM-CT, AM-3D, AT-3D) and the PSA was assessed to evaluate the prediction accuracy. Results: The correlations between the AM-CT and the PSA were 0.86 (mean difference (MD) = 1.9°) and 0.92 (MD = -3.0°) at 5 and 10 mm heights, respectively. The correlation between the AM-3D and the PSA were 0.71 (MD = -11.6°) and 0.61 (MD = -12.9°) at 5 and 10 mm heights. The AT-3D was significantly greater (MD = 15.4°) than the PSA (p-value <0.01) at 5 mm cutting height, and the correlation between the AT-3D and the PSA was 0.57 (MD = 7.8°) at 10 mm cutting height. Conclusions: The AM-CT at the 10 mm height had the strongest correlation with the PSA and was more reliable in predicting the PSA when compared with the AM-3D and the AT-3D in DDH patients.

10.
Front Surg ; 9: 863823, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35647013

RESUMO

Objective: Several needleless techniques have been developed to outcome the inherent disadvantages of the traditional needle stitching technique for graft preparation, such as tendon damage through the needle, time consumption, and the potential risk of needlestick injury. The purpose of the present study is to compare the graft preparation time and the biomechanical performance between an efficient needleless technique and the traditional needle stitching technique for graft preparation in anterior cruciate ligament reconstruction (ACLR). Methods: The time required to perform a complete suture on 20 hamstring tendons during ACLRs was measured. The grafts from one side were prepared using the needle stitching technique. The grafts from the other side used the needleless grasping suture technique. For the second part of the study, 12 fresh-frozen porcine flexor tendons were divided into two groups using two techniques and were mounted in an electric tensile test system. Each group was pretensioned to 100 N to simulate the maximum initial graft tension. The suturing state of sutures and graft (intact and damaged) and the load-elongation curve were recorded for each group. A Student's t-test was used to compare the means of the two groups. Results: In operation, the needleless grasping suture technique group (19.8 ± 4.8, range: 13.5-32.9 s) was significantly faster (p < 0.05) than the needle stitching technique group (52.7 ± 12.7, range: 36.0-87.5 s). The state of sutures in each group was intact. The mean elongation was 11.75 ± 1.38 (range: 9.47-12.99) mm and 10.59 ± 1.02 (range: 9.12-11.76) mm in the needleless stitching technique group and the needle grasping suture technique group, respectively. There was no statistically significant difference in the elongation between the two groups (p > 0.05). Conclusion: The needleless grasping suture technique was a convenient and efficient method for graft preparation in ACLR.

11.
Front Bioeng Biotechnol ; 9: 797389, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34900975

RESUMO

Purpose: The aims of this study were to 1) investigate the effects of femoral drilling angle in coronal and sagittal planes on the stress and strain distribution around the femoral and tibial tunnel entrance and the stress distribution on the graft, following anterior cruciate ligament reconstruction (ACLR), 2) identify the optimal femoral drilling angle to reduce the risk of the tunnel enlargement and graft failure. Methods: A validated three-dimensional (3D) finite element model of a healthy right cadaveric knee was used to simulate an anatomic ACLR with the anteromedial (AM) portal technique. Combined loading of 103.0 N anterior tibial load, 7.5 Nm internal rotation moment, and 6.9 Nm valgus moment during normal human walking at joint flexion of 20° was applied to the ACLR knee models using different tunnel angles (30°/45°/60° and 45°/60° in the coronal and sagittal planes, respectively). The distribution of von Mises stress and strain around the tunnel entrances and the graft was calculated and compared among the different finite element ACLR models with varying femoral drilling angles. Results: With an increasing coronal obliquity drilling angle (30° to 60°), the peak stress and maximum strain on the femoral and tibial tunnel decreased from 30° to 45° and increased from 45° to 60°, respectively. With an increasing sagittal obliquity drilling angle (45° to 60°), the peak stress and the maximum strain on the bone tunnels increased. The lowest peak stress and maximum strain at the ACL tunnels were observed at 45° coronal/45° sagittal drilling angle (7.5 MPa and 7,568.3 µ-strain at the femoral tunnel entrance, and 4.0 MPa and 4,128.7 µ-strain at the tibial tunnel entrance). The lowest peak stress on the ACL graft occurred at 45° coronal/45° sagittal (27.8 MPa) drilling angle. Conclusions: The femoral tunnel drilling angle could affect both the stress and strain distribution on the femoral tunnel, tibial tunnel, and graft. A femoral tunnel drilling angle of 45° coronal/ 45° sagittal demonstrated the lowest peak stress, maximum strain on the femoral and tibial tunnel entrance, and the lowest peak stress on the ACL graft.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA